Evaluating Automated Software
Verification Tools

Christian R. Prause
Rainer Gerlich
Ralf Gerlich

Japariese Hitomi telescope (2016). Cost: 286.000.000 USD
— After 3 months in orbit, update of software
Spacecraft starts splnnlng faster and fast i |ntegrat|

b -
CC BY 2.0: JAXA/Akihiro Ikeshita. https://www.flickr.co

Ariane 5.01, 1996
Cost: 1 billion EUR

Software glitch: on-board computers crash one after another.
Leads to development of Polyspace tool

Spacecraft Software

Spacecraft = one-of-a-kind device
Software assumes critical functions
RAMS plays critical role, e.g. by

— testing and validation,
— safety & dependability analyses,
— standardization,

— process control,

— process improvement

Important: verification of code using automated
software verification (ASV) tools

Automated software verification

’

* ECSS demand: “verify source code robustness’

 Examples

— resource sharing, pointers, division by zero,
control and data flow, internal consistency, non-
deterministic behavior, data corruption, security
breaches, square roots of negative numbers,
overflows, underflows, out-of-bounds array, illegal
type conversions, non-initialized data

ASV Tools

* even when tools seemingly have same
functionality
— underlying technology not comparable
— each tool finds defects not found by others

* General motivation:
What can practitioners expect from using
different tools?

N

Research questions

s it justified to apply ASV to already qualified software?
What is the best ASV tool available?

Are there significant differences between tools’
capabilities?

Does longer analysis runtime mean less reports or better
results?

Are tools that issue more reports less cost-efficient than
tools that report fewer ones?

s it effective and efficient to apply more than one tool?

Would a simpler evaluation (e.g., counting reports) lead to
comparable results?

Materials / Method

e Material

— real-world, qualified flight software
— ASV: Polyspace BF+CP, QA C, Klocwork, DCRTT, gcc

 Method:
1. Apply all six tools to software; collect the reports
2. Consolidate reports into single set

B W

Validate each report by reviewing code
Data analysis and evaluation

Overview Data Gathering Process

Configure tools

software.
Decide tool
reports.
Reconfigure Consolidate
and Rerun reports.

Reconsider

Report-by-report analysis

Code ‘reported by tool A B C

int main(int argc, char* argv[])

{ X
for(int i = 0; 1 <= argc + 1; i++) {
printf (“Arg 3%d: %s”, i, argv[il]) X X
} X
printf (“"Hallo welt!”); X

check

AN

xS

Output data

Contingency Table: Fault Reports

Classifying Reports

Signal Detection Theory:
Sensitivity = TP / (TP + FN)
Precision =TP / (TP + FP)

Does tool
issue a bug
report here?

Tool issued
report

Tool issued
NO report

Defect present?

Defect Defect NOT

present present
- -

In Practice: Challenges

Difficulties exporting data from tools

Aligning fault types/reports (fault catalog)
Critical vs. warning reports

With- and without-context views
Consecutive faults

DeWitt-Clauses

Result data

Overall ToolA ToolB ToolC ToolD ToolE ToolF
(D Tool runtime (minutes) - 10 300 600 15 3 5
@ True positive VMM 4 1se positive 1% 0% 13% 20% 0% 0% 10%
@ Total number of critical reports 86 8 73 48 | 11 58
@ Total number of warnings reported 184 13 14 71 1 17 96
@ Ratio of critical reports out of all reports 32% 38% 72% 29% 50% 39% 31%
® Unique contribution (critical) 39 | 23 10 0 2 3
(© Consecutive fault ratio ~ 50% 32% 48% 38% 33% 12% 37%
@D Sensitivity / precision (total) in % 100 /78 10/90 | 37/77 | 38/59 | 1/100 | 13/89 | 69/87
@D Sensitivity / precision (critical) in % 100 / 83 /75 | 72/ 81 | 48/97 | 1/100 | 14/91 | 55/83
(D Sensitivity / precision (warning) in % 100 /76 107100 | 18/ 71 | 32/45 | 1/100 | 12/88 | 77/ 88
® Time wasted on false positives (minutes) 373 20 54 269 0 25 88
® Analysis time for all reports (minutes) 1083 30 372 735 11 97 510
(® Analysis time per source line of code (min.) 0.45 0.03 0.16 0.31 0.00 0.04 0.21
® Min/max analysis time per report (minutes) 0761 0725 0725 0761 5/6 0718 0725
@ Avg. time to find a warning true positive 5.13 4.21 4.96 942 5.50 3.88 3.57
@ Avg. time to find a critical true positive 15.25 13.33 7.29 21.62 11.00 9.70 13.08
® Similarity (Jaccard) to optimal profile 1.00 0.09 0.34 0.31 0.01 0.12 0.64
® Similarity (Jaccard) to opt. critical profile 1.00 0.08 0.61 0.47 0.01 0.14 0.49
© Avg. critical true positive when run as 279 16.0 32 384 23.2 0.6 54 254
© ... when run as 379 11.2 1.9 30.0 l16.1 0.3 3.1 15.9
© ... when run as 4" 8.2 1.4 24.7 11.7 0.1 2.2 9.4
O Avg. additional total effort when run as ond 226.1 42.8 245.6 614.8 8.6 59.0 385.8
O ... when run as 379 177.5 23.9 161.8 534.1 6.8 379 300.6
O ... when run as 4" 147.9 15.7 110.9 483.6 5.6 26.7 245.2
® Avg. add. effort per true positive when 274 14.5 13.3 6.40 26.50 14.33 10.93 15.19
® ... when run as 379 16.5 12.58 5.39 33.17 22.67 12.23 18.91
® ... when run as 4" 19.1 11.21 4.49 41.33 56.00 12.14 26.09
® Predict functions with many warnings, R> 0.43 0.02 0.00 0.12 0.01 0.21 0.24
@® Predict functions with many criticals, R? 0.40 0.00 0.19 0.12 0.00 0.01 0.08
© Perceived usability - ++ 0 0 + +++ +

RQ Answers (short) (1/4)

* |sit justified to apply ASV to already qualified
software?
— Quality improvement: Yes.

— Economic perspective:

* Are there significant differences between
different ASV tools’ capabilities?
— Yes. Using different tools always adds something.

RQ Answers (short) (2/4)

e What is the best ASV tool available?

— No universal answer. It depends.

* Does longer analysis runtime mean more
precise reports or better results?

— No.
But longer runtime indicates focus on critical
rather than warning messages.

RQ Answers (short) (3/4)

* Are tools that issue more reports less cost-
efficient?

— |t depends. Yes, more reports. No, not more false
positives.

* |s it effective and efficient to apply more than one
tool?

— Effective: Yes. More faults found.
— Long-term efficiency:
— Short-term efficiency: [next slide]

Combined efficiency vs. Review

e Two tools e . &
. B ToolB A
combined: o | | ® e # :
. . B ToolE
Similarto/ @ o |
better than 3§ _ 4
reviewing : e
xS
Ell 22}0 4';}(} 5'!}(} 8E|lU 1 Dll]U 1 2|UU

Effort spent (in minutes)

RQ Answers (short) (4/4)

 Would a simpler evaluation method have led
to comparable results?

— Probably not.

e Often superficial analysis only (e.g., by interns)
— Report counts alone are a bad predictor
— Crafted test suites often neglect context
— No clocking of analysis times
— Consecutive faults

Thank you for your attention!

e ASV tools important for avoiding costly failures
— But tools are very different

* Present sophisticated method for
characterizing tools
— Analysis process
— Data format for report database
— Lessons learned

* Discussed several research questions

Data Format (columns per report)

Field Description

ID Unique identifier for the suspected
fault; 1.e., 1its ID 1n the consolidated list

file Path and file name of the file where the
report is found

function Name of function containing the report

line Source line number of report

type Fault type according to our catalog

description A human-readable description of report
that justifies 1its type classification

implied by If report 1s a consecutive fault, then the

other one’s ID (cf. grouping)

decision w/o | TRUE if report is true positive without
context considering context, FALSE otherwise
analysis time | Minutes spent for analyzing report
without considering context.
justification Human-readable explanation for above
decision

[decision Above three fields repeated for the
with context] | “with-context™ case

[found by | For each ASV tool, whether or not it
ToolA...F] issued this report

