
Evaluating Automated Software
Verification Tools

Christian R. Prause

Rainer Gerlich

Ralf Gerlich

DLR.de • Folie 2

CC BY 2.0: JAXA/Akihiro Ikeshita. https://www.flickr.com/photos/nasablueshift/14070846521 2017-05-02

Japanese Hitomi telescope (2016). Cost: 286.000.000 USD

After 3 months in orbit, update of software.

Spacecraft starts spinning faster and faster until disintegration.

DLR.de •
Folie 3

Ariane 5.01, 1996

Cost: 1 billion EUR

Software glitch: on-board computers crash one after another.

Leads to development of Polyspace tool
Public domain. Fabio Baccaglioni. https://www.youtube.com/watch?v=Z9EnUQltR9A (2017-04)

Spacecraft Software

• Spacecraft = one-of-a-kind device
• Software assumes critical functions
• RAMS plays critical role, e.g. by

– testing and validation,
– safety & dependability analyses,
– standardization,
– process control,
– process improvement

• Important: verification of code using automated
software verification (ASV) tools

Automated software verification

• ECSS demand: “verify source code robustness”

• Examples

– resource sharing, pointers, division by zero,
control and data flow, internal consistency, non-
deterministic behavior, data corruption, security
breaches, square roots of negative numbers,
overflows, underflows, out-of-bounds array, illegal
type conversions, non-initialized data

ASV Tools

• even when tools seemingly have same
functionality

– underlying technology not comparable

– each tool finds defects not found by others

• General motivation:
What can practitioners expect from using
different tools?

Research questions

1. Is it justified to apply ASV to already qualified software?
2. What is the best ASV tool available?
3. Are there significant differences between tools’

capabilities?
4. Does longer analysis runtime mean less reports or better

results?
5. Are tools that issue more reports less cost-efficient than

tools that report fewer ones?
6. Is it effective and efficient to apply more than one tool?
7. Would a simpler evaluation (e.g., counting reports) lead to

comparable results?

Materials / Method

• Material

– real-world, qualified flight software

– ASV: Polyspace BF+CP, QA C, Klocwork, DCRTT, gcc

• Method:

1. Apply all six tools to software; collect the reports

2. Consolidate reports into single set

3. Validate each report by reviewing code

4. Data analysis and evaluation

Overview Data Gathering Process

Tool 1

Source Code

Reports

Tool 2

Reports

Tool 3

Reports

Tool 4

Reports

Review Conflicts
(manually)

Decide tool
reports.

Consolidate
reports.

Assessment Assessment Assessment Assessment

Configure tools

Reconsider

Reconfigure
and Rerun

Run tools on
software.

Consolidated Report, Defect Profiles,
Statistics

Final List of
Findings

Report-by-report analysis

Code reported by tool A B C check

int main(int argc, char* argv[])

{ X ✓

for(int i = 0; i <= argc + 1; i++) {

printf(“Arg %d: %s”, i, argv[i]); X X ✓ ✓

} X 

printf(“Hallo Welt!”); X ✓

}

Output data

Contingency Table: Fault Reports

Classifying Reports
Signal Detection Theory:
Sensitivity = TP / (TP + FN)
Precision = TP / (TP + FP)

Defect present?

Defect
present

Defect NOT
present

true
positive

false
negative

false
positive

true
negative

Does tool
issue a bug

report here?

Tool issued
report

Tool issued
NO report

In Practice: Challenges

• Difficulties exporting data from tools

• Aligning fault types/reports (fault catalog)

• Critical vs. warning reports

• With- and without-context views

• Consecutive faults

• DeWitt-Clauses

Result data

RQ Answers (short) (1/4)

• Is it justified to apply ASV to already qualified
software?

– Quality improvement: Yes.

– Economic perspective: maybe.

• Are there significant differences between
different ASV tools’ capabilities?

– Yes. Using different tools always adds something.

• What is the best ASV tool available?

– No universal answer. It depends.

• Does longer analysis runtime mean more
precise reports or better results?

– No.
But longer runtime indicates focus on critical
rather than warning messages.

RQ Answers (short) (2/4)

• Are tools that issue more reports less cost-
efficient?
– It depends. Yes, more reports. No, not more false

positives.

• Is it effective and efficient to apply more than one
tool?
– Effective: Yes. More faults found.

– Long-term efficiency:

– Short-term efficiency: [next slide]

RQ Answers (short) (3/4)

Combined efficiency vs. Review

• Two tools
combined:
Similar to /
better than
reviewing

• Would a simpler evaluation method have led
to comparable results?

– Probably not.

• Often superficial analysis only (e.g., by interns)

– Report counts alone are a bad predictor

– Crafted test suites often neglect context

– No clocking of analysis times

– Consecutive faults

– …

RQ Answers (short) (4/4)

Thank you for your attention!

• ASV tools important for avoiding costly failures

– But tools are very different

• Present sophisticated method for
characterizing tools

– Analysis process

– Data format for report database

– Lessons learned

• Discussed several research questions

Data Format (columns per report)

