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Abstract—Generating useful test data is one of the big 

challenges in automatic software testing. While random test 

data generation is the easiest method, the test inputs generated 

by it may fail to exercise the software under test properly if the 

internal structure of the data is unknown to the generator and 

at the same time relevant for the decisions taken in the code. 

Handling of telecommands in space onboard software is one 

example where this is the case. We investigate a method of 

generating test data for these cases using genetic algorithms. 
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I. INTRODUCTION 

Software testing can be used to assess the software in a 
representative execution environment. Even though it is 
impossible to prove the absence of defects, it can reveal 
existing defects simply by executing the software with pre-
determined inputs and checking for the desired results. Given 
a sufficient number of such test cases, not detecting further 
faults can lead to a sufficient level of confidence in the 
correctness of the software itself. 

This sufficient number of test cases, however, is very 
difficult to achieve if test cases are selected manually. The 
associated effort is typically prohibitive. Thus, automatic 
methods for test data generation will help to overcome this 
constraint. 

Random test data generation lends itself to quick 
generation of large, generally unbiased sets of test inputs or 
even test cases[1][2] and can be easily used for detecting 
basic defects (fuzzing)[3][4]. 

However, large portions of randomly generated data 
typically represent invalid inputs for the software under test, 
even more so if structural information about the input data is 
not available. This is specifically the case when generating 
test data for telecommand handling code received as pure 
byte stream. 

At this point, telecommands are passed between 
hardware and software in the form of sequences of bytes, and 
there is no structured type information associated with the 
data within the code at the point of reception. Random 
testing here would heavily exercise the validation code in 
terms of robustness testing, generating mostly invalid 
command packets, while leaving the actual functionality 
mostly untested. 

Constraint-based[5][6] approaches may lend themselves 
to generation of appropriate data for these cases, but they 
come at the price of computational, but also general 
complexity[7][8]. 

A middle ground between these extremes may be 
occupied by heuristic methods such as genetic algorithms[9]. 
We present our approach to practical evaluation of such 
methods in the specific context of generating test data for 
telecommand processing code. 

The paper is structured as follows: After this 
introduction, we will lay out the approach considered so far. 
This will be followed by a brief presentation of measurement 
data guiding strategic decisions between different variants. 
Finally we will provide intermediate conclusions and an 
outlook on our future work. 

II. APPROACH 

Our approach uses classical genetic algorithms, extended 
by elitism[11], immigration[12] and directed mutation. The 
genome of each individual is represented by a byte-string, 
initially filled with random data. The length of each byte-
string is chosen randomly from a configurable range. 

We aim at fulfilling structural coverage, either in the 
form of statement or of condition/decision coverage. While 
structural code coverage by itself is not a sufficient measure 
of usefulness for test data selection[10], at minimum 
achieving full coverage according to these criteria is a 
necessary condition for detecting faults. After all, a fault 
contained in code that is never executed during test will not 
be detected by the test. 

Also, for the application case we are targeting – 
telecommand processing – the structure of the validation and 
processing code usually represents different forms and 
variants of telecommand contents. Decisions taken during 
validation will separate the possible set of inputs into those 
packets seemed valid by the implementation and those that 
are not. This can be seen in the example given by Fig. I-1, 
where decisions are taken based on the size of the packet and 

Fig. I-1 Control-Flow Graph 
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the contents of specific fields within the packet header (here: 
the packet type). 

Thus, coverage of the code should also imply close 
coverage of the different kinds and structures of 
telecommands. 

However, genetic algorithms are still heavily based on 
random data and thus the set of solution candidates can still 
be expected to exhibit sufficient variance wherever the 
conditions imposed on the solution allow for that. 

The algorithm is thus not bound to provide only the most 
straight-forward inputs that happen to fulfil the coverage 
criteria. Instead, the bias usually expected from manual, 
coverage-driven test data selection can be counteracted by 
randomly selecting one or even more than one element from 
the provided set of matching inputs. 

A. General Principles of Genetic Algorithms 

Genetic algorithms apply the principles of evolution to 
optimize a set of candidate solutions – the individuals 
forming a population – towards a specific optimisation goal. 
In each iteration of the algorithm, a new generation of 
individuals is produced from the current generation using 
several genetic operators, most specifically cross-over and 
mutation. 

For cross-over, two individuals from the current 
generation are selected and recombined into a new 
individual, similar to how in nature two individuals create 
offspring that carries genetic information combining parts of 
the genetic information of its parents. 

Individuals better adapted to their environment have a 
higher chance of participating in pro-creation than their less-
adapted peers. The idea is that the combination of genetic 
traits of well-adapted parents will lead to well-, and possibly 
even better-adapted children. 

In case of optimisation, the level of adaptation to the 
environment – or fitness – of an individual is defined by how 
well the individual solves the optimisation problem. 

Mutation operators randomly modify the individuals after 
recombination, aiming to keep the variance in the population 
sufficiently high so that new solutions can be found on 
recombination. 

B. Elitism 

In classical genetic algorithms, each generation is 
completely replaced by its succeeding generation. However, 
in nature, well-adapted individuals also tend to survive 
longer than their less-adapted counterparts. This may also 
allow them to produce more offspring, and thus benefit the 
population as a whole by passing their good genetic traits on 
to more children. 

Elitism[11] is a modification to classical genetic 
algorithms which aims to model this survival by copying a 
certain portion of the population of pre-defined size to the 
next generation, namely the best-adapted individuals in the 
population – the elite. 

C. Cross-Over and Mutation Operations 

We employ single-point cross-over: The individuals are 
cut at a common, randomly selected cross-over point and 

two new individuals are generated by swapping the ends of 
the byte-strings. 

Three different types of mutation are possible: 

 Cutting off the last byte, 

 add a random byte at the end, or 

 flipping a random bit within the byte-stream. 

Reduction and extension of size can happen at most once 
per mutation step, while multiple bit flips are possible. The 
number of bit flips performed during a single mutation step 
is chosen randomly, with (  =  ) =    (1 −  ) giving the 
probability of   bit flips occurring in a row. Note that 
theoretically the same bit may be flipped multiple times 
during a mutation step. 

D. Measuring Fitness 

Different from usual genetic algorithms, we apply a cost 
function instead of a fitness function: Low cost corresponds 
to high fitness and vice versa. 

The cost of an individual shall express how far the 
individual is away from reaching the selected coverage 
target. It is determined by executing the telecommand 
handling procedure on it and monitoring the control flow 
decisions taken. 

For illustration, consider the control-flow graph shown in 
Fig. 1. To reach Node 4 from the entry point, execution must 
traverse the edge from the entry point to Node 2, and then 
the edge from Node 2 to Node 4. 

Let us assume that – different from what is desired – 
execution proceeds from the entry node to Node 1, from 
where we cannot reach Node 4 anymore. 

The branch taken implies that size<sizeof(header) 
is fulfilled. To change that decision, we would have to 
change the value of size by at least 
                     . Thus, this value can be 
considered to be the distance between the current input and 
one that would fulfil one more of our requirements. 

We can define cost functions for other relations between 
expressions E and F evaluated at a node as shown in Tab. 
II-1[13][14]. 

In summary, the value of the cost function is determined 
by executing the function under test on the respective 
individual. The code is instrumented such that whenever a 
branch is taken, the cost function is updated. If the target 
point can still be reached, the cost function remains 
unchanged. If the target point cannot be reached anymore, 
the value of the cost function is set to the value of the 
respective expression given inTab. II-1.  

Condition Cost Function 

E==F       
E!=F 

 
       
          

  

E<F, E>F         

E<=F, E>=F       

Tab. II-1 Cost Function Definition 
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E. Mutation Reversal 

All three forms of mutations are directed in that the cost 
function is re-evaluated after an individual mutation, and if 
the cost after mutation is higher than before the mutation, the 
mutation is reversed at random with a fixed probability. 

This is similar to a probabilistic variant of gradient 
descent optimisation. However, while gradient descent tries 
to determine the direction of the local gradient and optimises 
deterministically, e.g. using Newton’s method for finding 
zeroes, here a random change is applied and taken back 
probabilistically if the change does not enhance the solution. 

Thus, with a given, finite probability, a solution may also 
be modified in a direction that – at least from a local point of 
view – diminishes the value of the solution. Thereby the 
deterministic descent into local, non-global optima can be 
avoided. 

F. Algorithm Variants 

Consider once again the example in Fig. I-1. If we 
wanted to reach Node 4, a cost value of 1 would not indicate 
whether execution deviated at the entry node or in Node 2. 
We would favour the second case, as it is closer to our goal, 
but we would not be able to determine that from the cost 
value. Adding that information to the cost function would 
require us to introduce a relative weighting factor for the 
distance from the target, but we have no basis for choosing a 
useful value for that weighting factor. 

Instead, we select a sequence of intermediate goals 
before the final goal, and apply the algorithm to all goals in 
sequence. Before considering the next goal in the sequence, a 
sufficiently large portion of the population must fulfil our 
current goal. We call this modification the Sequential 
Approach, while the original approach shall be referred to as 
the Single-Step Approach. 

In order to reach Node 4, we first have to reach Node 2. 
Node 2 is a decision node for Node 4 in that the decision 
taken in Node 2 influences whether we can reach Node 4: 
Taking any of the edges to Node 3 or Node 5 means that 
Node 4 cannot be reached any more. Node 2 also dominates 
Node 4 in that every path from the entry point to Node 4 
must traverse Node 2[15]. 

Thus we select our intermediate nodes from the nodes 
dominating our target node while at the same time containing 
decisions that influence whether we can actually reach our 
final target node. 

G. Immigration 

In the Sequential Approach, the switch from one 
intermediate goal to the next can be compared to an abrupt 
change in environment in terms of evolution. This change 
may require additional variance within the population, which 
can be introduced by filling a portion of the next generation 
of pre-defined size with new random individuals[12]. This 
process is similar to the influx of new individuals from 
outside the current domain of the population, i.e. 
immigration. 

III. MEASUREMENTS 

The algorithm described in Section II has seven 
important parameters which can be modified and which can 
impact performance: 

 Population size, 

 Proportion of population kept as elite, 

 Proportion of population filled by immigration, 

 Probability for byte extension mutation, 

 Probability for byte reduction mutation, 

 Probability for bit flip, and 

 Probability for mutaton reversal. 

In addition, we have the option of using one of two 
variants, the single-step or the sequential method. 

tc_error_t proc_tc(void* data, 

         size_t sz) 

{ 

 if (sz<sizeof(tc_header_t)) 

  return tc_error_invalid_size; 

 else { 

  const tc_header_t* header = 

    (const tc_header_t*)data; 

  switch (header->type) { 

  case tc_set_logging_params: 

   return proc_set_log_para(data,sz); 

  case tc_download_log: 

   return proc_dl_log_tc(data,sz); 

  default: 

   return tc_error_invalid_type; 

 } 

} 

 

tc_error_t proc_set_log_para (void * data, 

              size_t sz) 

{ 

 if (sz!= sizeof(tc_set_logging_params_t)) 

  return tc_error_invalid_size; 

 else { 

  const tc_set_logging_params_t* tc = 

   (const tc_set_logging_params_t*)data; 

  if (tc->reserved!=0) 

   return tc_error_invalid_param; 

  else if (tc->frequency>100) 

   return tc_error_invalid_param; 

  else if (tc->frequency<1) 

   return tc_error_invalid_param; 

  else 

   return tc_ok; 

 } 

} 

 

tc_error_t proc_dl_log_tc (char* data, 

             size_t size) 

{ 

  if (size!= sizeof(tc_download_log_t)) 

  return tc_error_invalid_size; 

  else 

  return tc_ok; 

} 

Lst. III-1 Example Code 
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Although it is possible to derive predictions for the 
impact of these parameters from theory for corner cases, 
their impact in intermediate ranges is not that straight 
forward. For example, we can determine that using 100% of 
the population as elite will lead to stagnation, but a 
prediction for a elite proportion of, e.g., 50% is more 
difficult to make. 

Thus we need to measure the impact of these parameters 
on observables such as total runtime or the number of 
generations needed until a solution is found. 

We performed measurements on an Laptop PC with an 
Intel®Core™i7-2630M CPU at 2.0GHz with 6GB RAM. 
The operating system was Debian GNU/Linux 7.11. 

As reference for the first experiments the code in Lst. 
III-1 was used, which contains basic handling code for 
simple telecommands. 

For comparing single-step vs. the sequential approach, 
we executed each form 400 times for a single example each, 
capturing the runtime of each execution. Otherwise the 
parameters for both variants were the same. 

Minimum, mean and maximum execution times for each 
of the variants are given in Tab. 2. The measurements show 
that the single-step variant has an approximately 6-fold mean 
execution time compared to the sequential variant, with the 
maximum execution times differing by about a factor of 9. 
Therefore the sequential approach seems to be at a clear 
advantage. 

Variant Min (s) Mean (s) Max (s) 

Sequential 0.161 2.595 15.931 

Single-Step 0.268 15.553 146.180 

Tab.  III-1 Execution Time Statistics 

IV. CONCLUSIONS AND FUTURE WORK 

Our work so far has shown that genetic algorithms are a 
feasible approach to the generation of test data for code 
processing untyped byte-streams, specifically telecommand 
handling code, and has provided us with some insights into 
suitable variations of the pure approach. The experiments 
also indicate that the calculation of the fitness function can 
be done by basic instrumentation of the code under test. 

In the meantime we have proceeded to integrate the 
approach with our random testing framework DCRTT[4], 
with the goal of performing experiments on industry-grade 
from actual space software. The integration is not yet 
completed, although we were able to perform some first 
simple tests. 

Further investigations will also consider multi-factorial 
analysis of the impact of parameter values on the 
performance. 

One important aspect of research will be the dependency 
of optimum parameter values on the respective software to 
be tested. In theory, it is possible that different variants of 
implementations of telecommand handling may require 
different parameter sets for optimal runtime of the genetic 
algorithm. The question to be answered is whether these 
optimum parameter sets differ significantly from each other, 
or whether there is a basic parameter set that is good enough 
for practical use. 
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