

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-1-

Challenges Regarding Automation of Requirements-based Testing

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System

and Software Engineering

Immenstaad, Germany

e-mail: Ralf.Gerlich@bsse.biz,

Rainer.Gerlich@bsse.biz

Maria Hernek, Jinesh Ramachandran

European Space Agency

 Noordwijk, The Netherlands

e-mail: Maria.Hernek@esa.int,

Jinesh.Ramachandran@esa.int

Allan Pascoe, Glenn Johnson

SCISYS UK Ltd.

Bristol, UK

e-mail: Allan.Pascoe@scisys.co.uk,

Glenn.Johnson@scisys.co.uk

Abstract—Testing as a method of software verification is

limited in that it can only prove the presence of defects, not

their absence. To be useful, a large number of test cases may

be needed, a strategy that is often in conflict with project

constraints such as available time and funds. Test automation

may be considered as an interesting approach to alleviating

this conflict. However, test automation requires accurate and

computer-accessible information about the system to be tested,

both in terms of the interfaces by which the system is to be

stimulated as well as the desired properties of these interfaces.

Within the FASTII activity (FAST=Flow-optimised Automated

Source-code based Testing) the possibility of deriving this

information from available requirements and design

documents is being investigated. Preliminary results of this

investigation as well as suggestions for future changes in the

process are presented in this paper.

Keywords: automated software test, requirements-based

testing, requirement semantics, test oracles, software defects,

defect identification, software verification, verification efficiency

I. INTRODUCTION

Testing as a method of verification or validation is
limited in its expressiveness by the fact that it cannot prove
the absence of defects. Instead, absolute statements are only
possible about the behaviour of a system for the test cases
applied, but not for any other cases.

Considering the internal structure of the system, the
results may be extrapolated towards other cases using
methods such as equivalence class analysis. Such approaches
may be error-prone as they require theoretical, often manual
reasoning about the actual limits of valid extrapolation.

Statistical methods can be applied to estimate the
reliability of the system, but in order to provide a sufficiently
accurate estimate, they may require large numbers of test
cases.

At the same time, often project constraints limit the
number of test cases which can be selected and applied
within the confines of the effort allocated to testing.
Specifically for manual test design, the number of test cases
required for an appropriate reliability estimate may be
prohibitively high.

Automated software testing may allow for a reduction of
the mean effort spent on a single test case, thus increasing
the number of test cases that can be applied within the
allotted frame of effort.

It may also provide a more systematic means of selecting
test cases, thereby enhancing the statistical representativity
of the test results.

However, automation of software test requires that the
information needed for all steps of the test process are
available in a manner that can be evaluated by an algorithm.
In case of automated requirements-based testing, this
specifically requires information about the actual
functionality described by a requirement, but also about what
stimuli would trigger the functionality associated with the
requirement in order to ensure that there are sufficient test
cases generated exercising each individual requirement.

The FAST process (Flow-optimised Automated Source-
code based Testing) is comprised of a set of procedures and
tools to be used for software testing using massive
stimulation. A basic breakdown of the process is shown in
Fig. I-1.

Within the FAST process there are several levels of
testing, each one building upon the previous one.

The most basic level is that of massive stimulation,
exposing the software to large numbers of stimuli with the
goal of identifying general issues such as runtime exceptions
or possible non-termination. While not aimed at functional
verification, the evaluation results may very well point at
functional defects.

At the second level, a subset of the stimuli and the
observed outputs are selected automatically as test case
candidates. They are not actual test cases as the outputs in
these test cases need to be confirmed against the
requirements. They are also not selected with the goal of
providing coverage regarding the requirements, so that the
selected candidates may not sufficiently address the
requirements imposed upon the software.

Currently this confirmation and assessment of
requirements coverage would have to be done manually.

Within the FASTII activity we analysed the Software
Requirements Document (SRD) and the Software Design
Document (SDD) of a representative spacecraft on-board
software in order to determine whether the information
required for automated requirements-based testing is present
in these documents and could be extracted, either manually
or automatically. The results of this analysis shall be
presented herein.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-2-

Fig. I-1: Automated Requirements-based Testing in the FAST Process

This paper is structured as follows: In Chapter II, we
provide terms and definitions, followed by a presentation of
the results of an analysis of requirements and design
documents from a reference project in Chapter III. In
Chapter IV we discuss options for the retrieval of
information, including options for changing the way
requirements and design documents should be written, and in
Chapter V we provide conclusions and an outlook on future
work.

II. DEFINITION OF TERMS

Software testing aims to find faults in existing software
by exposing the software – or parts thereof – to pre-
fabricated stimuli, observing the reaction of the software and
ascertaining whether the reaction conforms to the expected
behaviour of the software given the stimuli.

Such a combination of stimuli and expected
reactions/outputs is usually referred to as a test case. A set of
test cases used in combination to test a specific part of
software is referred to as a test suite.

If the actual behaviour of the software matches the
expected behaviour, the test case is said to be passed,
otherwise it is said to fail. This result is called the verdict.

The process of software testing consists of
• the selection of stimuli,
• the determination of the expected behaviour of the

software under test,
• the injection of the stimulus,
• execution of the software-under-test,
• the extraction of the actual reaction of the software

under test, and
• the determination of whether the actual behaviour

of the software under test conforms to the expected
behaviour.

Algorithms that specify in a generic manner how to
check the conformance of the actual reaction to the expected
reaction are called oracles.

Such oracles may also be incomplete or incorrect,
meaning that they may flag test cases as failed although they
succeeded – so-called false positives – or they may flag test
cases as successful although they failed – so-called false
negatives.

False negatives may lead to defects staying undetected,
which may be acceptable to a project up to a certain level.
Essentially, even with a correct oracle, testing can never be
free of false negatives.

False positives lead to analysis effort without gain – a
failure report needs to be understood without detecting and
thus eliminating a bug. However, if the proportion of false
positives is small enough, this additional effort may be
outweighed by the effectiveness and efficiency gained by
executing and evaluating a large number of test stimuli
automatically.

The reason for implementing an incorrect or incomplete
oracle may be saved effort on the side of the oracle
implementation: Sometimes the cost and effort for
implementing a perfect oracle may be prohibitively large,
while a good but imperfect oracle might fit within the budget
constraints and still improve the effectiveness and efficiency
of the testing process. Ultimately, the decision needs to be
based on a balance of cost and effort.

One specific property of testing in general and software
testing in particular is that except for the simplest cases,
testing cannot be complete and thus the absence of false
negatives cannot be guaranteed.

It may be possible to partition the input space into so-
called equivalence classes, where any stimulus from a class
can be replaced by any other stimulus from the same class in

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-3-

terms of bug detection. This would mean that given n

equivalence classes, n test cases would be sufficient to detect
any bug in the respective function.

However, equivalence class testing in its pure form is a
rather theoretical concept. Actually constructing equivalence
classes regarding all possible bug types for a specific piece
of code may be cumbersome and lead to a high number of
equivalence classes which – although reduced in numbers –
are as impracticable to test as the complete input space.

Instead, the adequacy of a test suite is often measured by
test coverage metrics. Such metrics express the degree to
which the test suite exercises the relevant functionality of a
piece of software.

Most typically, structural test coverage metrics are used,
which are based on the portion of structural code elements –
such as statements, branches, conditions – that are reached
and stimulated by executing the respective test cases. One
example is statement coverage, which measures the relative
proportion of all statements executed during the test. Another
one is branch coverage, wherein the goal is to have each
branch in the code executed in each of the possible
alternatives. This is also called decision coverage. A variant
thereof is modified condition/decision coverage – or MC/DC
for short – where the test suite shall ensure that each of the
individual parts – the conditions – of the boolean expression
driving a decision has independently influenced the outcome
of the decision.

Fig. II-1: Generic Automatic Test Process

Software unit testing is software testing applied to the so-
called unit level. The term unit usually refers to the smallest
non-separable functional elements of a software product.
Often these are the individual functions or procedures
defined at code level, but a unit may also be composed from
a group of such functions which are intended to be used in
combination in order to provide atomic functionality. The

latter is often the case when object-oriented methods are
used in the design and implementation of the software.

Automated software testing refers to the process of
performing the task of software testing in an automated
manner. Within this document, the term shall be used
specifically to mean the full automation of the process,
consisting of all steps of the software testing process. A
possible generic design of such an automated software test
process is shown in Fig. II-1.

A stimulus generator selects test inputs, which are then
injected into the element under test. As a reaction to the
inputs, the element under test may generate outputs, which
are passed on to the oracle. The element under test may also
be queried for further results and the answers to these queries
may be passed on to the oracle as well. The oracle also
receives the original test inputs.

When all this data is available to the oracle, it delivers a
verdict, indicating whether it considers the test to be passed
or failed.

For all these elements to be executable by a computer,
their rules of operation must be well-defined so that a
computer – a non-sentient, mechanical device without
additional knowledge – can execute them.

III. ANALYSIS OF EXISTING REQUIREMENTS

In order to determine whether the information as required
for automated requirements-based testing could be found in
typical SRDs, and whether extraction of that information
could happen automatically, manually or in a mixed manner,
we considered requirements from an SRD of representative
spacecraft on-board software.

Due to effort constraints only a subset of requirements
was selected for analysis. In the specific case, the analysed
requirements concern the interface between the central
computer and the GPS receivers on-board the spacecraft. We
believe that these are quite representative for interfacing
requirements.

A. Method

The requirements were analysed for their semantic
content concerning the functionality to be implemented in
code. To identify a basic testing approach, the semantic
content was elicited manually by answering a generic
question for each of the requirements: When is the
requirement violated?

Besides being complementary to the approach taken to
requirements definition during authoring of the document –
where the requirements are usually written to express
positive functionality – this analysis approach is also closer
to the mechanism of software testing, which aims to reveal
non-compliance by way of executing test cases.

B. Requirement Classification

In total, 87 individual requirements were analysed. Each
of them could be assigned to one of six requirements classes,
based on their contents. A list of these requirements classes
together with statistics is given in Tab. III-1.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-4-

Category No. of Reqs.

Functions 46

Housekeeping 8

Communications 19

Monitoring 7

Telemetry Generation 3

Telecommand Handling 3

Total 87

Tab. III-1: Statistical Overview over analysed Requirements

For each of the classes, a generic testing approach was
defined. This testing approach not only defines a generic –
sometimes very high-level – principle on how to test the
requirements from the given class, but also allows a closer
look at what information is needed to test the given
requirements. Some examples – in simplified form – are
given in Tab. III-2.

Function requirements are defined in terms of pseudo-
code, each describing a specific subprogram, including its
input parameters and results.

Housekeeping requirements contain instructions for
storing specific information upon fulfilment of specific
conditions or occurrence of specific events for housekeeping
purposes.

Communication requirements concern the format
conversion and routing of telecommand (TC) and telemetry
(TM) packets.

Monitoring requirements specify how the status of
specific aspects of the system is to be monitored. This does
not include any reactions to the change of status, such as TM
generation or fault isolation and recovery.

Telemetry Generation requirements specify that
telemetry packets should be generated and routed to a given
destination upon given events – e.g. regular clock ticks or
specific triggers.

Finally, Telecommand Handling requirements define the
reaction towards specific telecommands being received.

1) Example: Communcation Requirements
Many of the requirements in the Communications

category were found to be in this or a very similar form:
“Upon receipt of the XYZ telecommand the Nominal

Mode Software shall route the telecommand to GPS in
accordance with the format and procedures specified in
[REF_ICD].”
Here, [REF_ICD] refers to an interface control document

(ICD) that describes the format and procedures mentioned.
A very basic understanding – if read by a human –

reveals that according to the requirement, the nominal mode
software shall convert any incoming telecommands of type
XYZ to the format defined in the referenced ICD and trigger
transmission towards the GPS. In how far the procedures
defined in the ICD imply that additional steps are necessary
– e.g. processing of acknowledgements, procedures for the

initiation and teardown of communication, windowing, etc. –
is not clear from the requirement itself, but hopefully would
be when looking at the ICD.

Let us break down the requirement into its parts. It
consists of:

 a condition/trigger: receipt of the XYZ
telecommand

 a subject: the nominal mode software

 an activity: route to the GPS

 an object: the telecommand

 a qualifier: in accordance with the format and

procedures defined in [REF_ICD].

Note that although structurally the qualifier seems to be
merely an addition to the other elementary parts of the
requirement, it can have immense impact on its
implementation, as already indicated above.

Let us for a moment forget the difficulties associated
with natural language parsing like resolving indirect
references such as “the telecommand” as present in the
“object” part of the requirement shown above. Let us instead
assume that this problem was solved – which it is not – and
that we have already concluded that the XYZ telecommand
is being referred to.

In general, to test such a requirement, we need to initiate
the given trigger or establish the given condition and observe
whether the respective activity is executed, considering the
aspects given by the qualifier. However, this is very general
and clearly not yet on a level that can be translated into
concrete operational steps.

First of all, how and where is the XYZ telecommand
received? We need to know where to inject it into the
subject, which is the nominal mode software. This
information clearly is not present within the requirement, and
hopefully is to be found elsewhere, possibly in other
requirements not explicitly referenced here.

Also, what actually is the nominal mode software? How
do we ensure that it is this software we are talking to?

For example, the nominal mode software can either be
implemented as a specific mode of an overall software
image, activated or deactivated by an in-memory switch.

It could also be a specific software image that is activated
from the bootloader by directing control flow towards the
entry point of this image after boot-up.

These two cases require two very different actions from
the side of the test setup – either setting the mode switch
appropriately or ensuring that boot-up ends within the
nominal mode software image. None of these are further
specified in the requirement, so we would have to search
elsewhere for this information.

What does “routing to the GPS” mean and how do we
verify that it is done? Usually it means sending out the
packet over some specific communication channel to which
both the computer running the nominal mode software as
well as the GPS are connected. But which channel is this and
how do we check for transmission via this channel?

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-5-

Class Text Testing Approach

COMM It shall be possible for the Nominal Mode SW to
command both the nominal and redundant GPS units
providing they are switched ON (as defined by the
current satellite configuration vector).

This requirement is violated if it is impossible for the
Nominal SW to command GPS units which are switched
on.

Upon receipt of the "XYZ" TC of [TC_REF] the
Nominal Mode SW shall route the TC to GPS in
accordance with the format and procedures defined in
[REF_ICD].

Proper conversion can be checked, e.g., by back-
conversion and comparison with the original.

HK The data contents of the following GPS TM packets
shall be stored within the system data pool: GPS
Message TM, Primary Message TM

These requirements can be violated by not storing the
data from the respective TM packets in the system data
pool or not storing them separately.

FUNC This function process_GPS_data processes the raw GPS
data. Its interface is summarised in Table xxx.

The detailed description of the algorithm can be used to
provide a reference implementation which can be used
as an oracle. This function GPS__navigation_function shall generate

the position and velocity in the inertial J2000 reference
frame for the current time for the following cases:

 …

 …

 …

 It will be called at n Hz in modes A and B. Its interface
is described in Table yyy.

Tab. III-2: Example requirements with Classification

Further: Is it sufficient on software level to test whether
the packet is passed on to the network driver, or do we need
to monitor the actual hardware connection? What about the
case when both are connected to a bus which also connects
to other modules? Then we need to check addressing. How
are packets addressed on the respective bus? Maybe the bus
is marking message types instead of destinations, similar to
the CAN-bus?

We see that even if we were able to actually parse the
sentence structure in a semantically meaningful manner, a lot
of issues regarding the resolution of more specific
information remain. The way the documents are structured
now the expectation that this issue can be solved reliably by
natural language parsing seems unreasonable.

2) Low-level Function Specification
Let us instead have a look at one of the function

specifications found within the SRD. Such function
specifications do not merely specify functionality, but
instead concrete low-level subprograms, i.e. implementation
details. It is somewhat odd to find these at the SRD level, as
the Software Requirements Document would normally be
expected to specify the problem space in terms of
requirements instead of the solution in terms of an actual
implementation. However, we will – again – forget this
detail for a moment.

Now let us consider one of these function specifications:
“This function process_GPS_data processes the raw

GPS data. Its interface is summarised in Table xxx.”
The table referred to would then contain parameter

specifications, listing for each parameter

 the parameter name,

 the parameter type,

 the parameter direction (input, output or both),

and

 a description of the purpose of the parameter.

The three first elements of the description represent the
information typically specified for the parameters in the
code. The name may even conform to typical restrictions for
identifiers (no whitespace, starting with a letter, etc.) and the
type might even be a formalized type name.

This could then be followed by one or more individual
requirements describing steps of the function implementation
in pseudo code or prose, possibly switching from one to the
other and back.

Depending on the quality of the prose, such
specifications should be convertible to so-called reference
implementations. These implementations would reproduce
the expected behaviour of the algorithm to be implemented,
and therefore would allow to explicitly produce the expected
output by simply supplying them with the designated inputs.

One may of course wonder about the meaningfulness of
such an approach. After all, when one can produce the
reference implementation from the specification, why not
use the reference implementation directly as the
implementation in the target system?

There may be several reasons why the reference
implementation may not be suited for use as an actual
implementation.

The reference implementation may depend on the
availability of features – such as libraries or calculation
structures – that are not available on the target. For example,
the reference implementation may be based on floating point
arithmetic, while the target does not provide this capability
and actual calculations on the target need to be done in fixed
point arithmetic instead.

Further, the way the reference implementation is
specified may lead to a high computational time or memory
use requirements which may not be feasible on the target or

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-6-

within the given runtime environment. Therefore, the actual
implementation may have to be a heavily optimised version
of the reference implementation.

And as a very basic modification that is necessary in
almost all cases, the pseudo code has to be translated into the
actual programming language used for implementation,
which may lead to deviations between the implementation
and the specification, and thereby imply the need for
verification – e.g., by testing.

For all of these issues, the function specification is a very
useful reference oracle.

3) Monitoring Requirement
Sometimes, even requirements other than function

specifications can be testable in an automatic manner,
typically when they contain pseudo code as well. One
example for such a requirement was lifted from the
monitoring requirements class:

“At 8Hz set the validity flags for the GPS Validity
monitors to true if the corresponding GPS unit is active
and the AOCS mode is Mode1, Mode2 or Mode3.

If the GPS unit X is active
 and the AOCS mode is Mode1, Mode2
 or Mode3
 GPS_X_validity_monitor = true.
else
 GPS_X_validity_monitor = false.
end”

Here, the second portion of the requirement essentially
repeats the functional part of the prose at the beginning of
the requirement in pseudo code.

This of course implies the question about which part of
the requirement is the normative one in case they should be
conflicting – which is actually the case here.

Consider the case that the GPS unit is inactive. The prose
does not specify any action for that case. It only says that the
validity monitor flags should be set to true if the GPS unit is
active (and some other conditions apply).

The pseudo code however explicitly specifies that in this
case the validity flag would have to be set to false. Thereby it
does specify a more strict requirement than the prose itself.

Again, the pseudo code could be used as a reference
oracle. Note that by expressing the requirement in pseudo-
code we can also provide a formal coverage criterion, such
as MC/DC. The results of this approach can be seen in Tab.
III-3.

Test
Case

Input Output

Status Mode Validity Validity

1 active Mode1 false true

2 active Mode2 false true
3 active Mode3 false true

4 active Mode4 true false
5 inactive Mode2 true false

Tab. III-3: Test Cases for the Monitoring Example

Note that here the validity – the variable that is to be set –
is also part of the input or rather the precondition. This way
one can actually determine whether the value was modified

by the function under test or whether it had already been set
to that value before. This could theoretically be derived from
the interpretation of the pseudo code.

While we are considering what the function under test
would be doing, we might notice that that function is never
mentioned. This is not surprising, as this is a functional, but
not a function requirement. How these monitoring checks are
implemented is left to the designer – as it should be.

4) Non-Functional Aspects
Another aspect of the requirement considered in 3) is not

covered by the pseudo code, but rather by the prose: The
update frequency.

The requirement can be understood in a way that
specifies a minimum update frequency of (at least) 8Hz. To
test that, one could establish a situation under which the
validity flag would have to be changed to true, wait for
125ms and then check whether the validity check has
changed.

However, formally the requirement does not specify that
the system must react to a change in the situation, but rather
should update the validity flag if – at the time of the update –
the situation is such that the validity flag would have to be
set to true.

Let us consider this case: During the waiting period of
125ms the GPS unit would become active, the AOCS mode
would change to Mode1, and immediately afterwards would
change back to Mode4. According to a possible
interpretation of the requirement, the system would not need
to detect changes at frequencies higher than 8Hz, so a
conforming implementation would not be required to
actually change the validity flag in that situation, but it
would be allowed to, should the execution of the respective
code happen during the short timeframe in which Mode1 is
active.

Vice versa, a short change from Mode4 to Mode1 and
back would not necessarily require the system to change the
value of the validity flag to true.

The actual outcome depends on when the respective
event happens relative to the execution of the update
procedure. This is indicative of a race condition. Invisible
Information

This whole issue is resolved if one interprets the “8Hz”
specified in the requirement not as an explicit real-time
requirement, but rather as an information to the designer to
plan sufficient computing resources for the update to occur at
a frequency of at least 8Hz. In that case, the test engineer can
rest calmly, because the non-functional requirement does not
have to be verified by test, but can be verified by design and
code review, e.g. of the scheduling tables.

In discussion it was revealed that this indeed was the
intention in this case. Unfortunately, such hidden
information would not be available to a naive reader of the
specification, as any machine performing natural language
interpretation would be.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-7-

Fig. III-1: Typical Document Flow for Software

C. Design Analysis

While the Function requirements do have quite a direct
link to the source code due to the fact that they define
specific functions, a link from the other requirements to the
source code-level is less apparent.

This is not surprising, as the SRD shall consider the
software subsystem as an integrated system to be tested as
such, and only specify what is to be implemented, not how it
is to be done. The specification of the latter would be
expected in the SDD. Therefore, the SDD was also analysed.

In case of the documents at hand, the SDD was more
descriptive than prescriptive in nature: It described the
design of the software and was not written with the intention
of it being a requirements document. As a consequence, no
atomic requirements describing the functionality of
individual functions could be identified.

We considered whether the information from the SRD
and the SDD could be joined via the information on tracing
between both documents. However, the finest level of
tracing found is at the level of individual code objects and
functions back to the SRD requirements they implement.

Information on what physical inputs to these functions
would correspond to triggers for the functionality described
in the respective requirements are therefore not readily
available at the level necessary for automated requirements-
based testing at source-code-level. The only exception to this
are the Function requirements already mentioned.

D. Documents in the Process: The Larger Picture

Looking at the larger picture we can confirm the
suspicion that indeed according to current processes the SRD

as a document is at the wrong level of detail for most
attempts at requirements-based unit testing.

Let us first take a step back and try to get a more general,
conceptual understanding of the process of breaking down
requirements in any engineering project, not just software
engineering. At some top level, there need to be general
requirements on what the system that is to be built is
expected to achieve. These requirements essentially state the
problem to be solved.

In a first step, one would try to determine a most general
solution and describe it from a very top-level perspective. So
while the top-level requirements would describe, what is to
be done, the design would describe, how it shall be done.

However, as the top-level design is only concerned with
a top-level perspective, it will have to be broken down into
solution components. For a satellite mission these
components could be the space, the operations and the user
segment. For a satellite they could be the satellite bus and the
payload subsystem.

Here, the design again poses requirements – not to the
system as a whole, but rather to the subcomponents. This
means that a design is also a requirements specification, only
for the levels of detail below it.

Following this principle, the SDD should be both a
requirements document and a design document. It describes
a design of the software element of the whole system, and at
the same time it imposes requirements onto that software
element.

In
Fig. III-1 we see a typical document flow for a spacecraft

development project according to the ECSS standards.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-8-

Within the figure we find the typical refinement structure
over the different levels of detail, starting from the system
level, over the software element level to the individual
software modules and the actual implementation.

The root of all artefacts for the software is the Software
Requirements Document (SRD) – shown as Software
Requirements Specification in the figure – together with any
relevant Interface Control Documents (ICDs).

The SRD is primarily aimed at describing the problem
space – although evidently, it may contain function and other
requirements that actually describe the solution already quite
in detail. Its connection to the actual software
implementation is only indirect, incorporating the software
architecture design and the Software Design Document
(SDD) in its path.

Conceptually, the SDD shall describe the solution,
answering to the problem description in the SRD, and the
software architecture design describes the breakdown of the
implementation of the software requirements into software
modules, as well as their interfaces.

What we also see from the figure is that the Software
Unit and Integration Test Plan (SUITP) is not directly
derived from the SRD, but rather from the SDD. This is not
surprising, as the Software Unit and Integration Test Plan
needs to refer to software units, which are defined in the
SDD, but not in any higher-level document.

According to this logic, the proper document to search
for requirements for unit level source-code-based tests would
be the SDD.

However, our analysis shows that the SDD currently
seems not to be considered to be a requirements document,
and therefore is not structured as one. Rather, it contains a
description of the software design, without explicitly
specifying functional or non-functional requirements
imposed on the individual components of the software.

Thus, no requirements to test against can be found in the
SDD, but while the SRD would contain requirements, they
are not generally expressed at a level suitable for use in
requirements-based unit testing. The only exception to this
are the Function requirements found in the SRD.

E. Results

The analysis of requirements for the specific application
highlights the difficulty of writing requirements such that
they express the intended functionality of the software in a
way that can be verified, e.g. by test. Many requirements
were not written with pass/fail criteria in mind, but the
emphasis is rather on communicating to a software designer
what is required in the software design.

The results also show that there is a potential for
formalisation based on common schemes. A large portion of
the requirements analysed so far can be sorted into one of a
few requirement categories, most of which are functional in
nature and could be expressed using temporal logic
formalisms.

The Functions requirements seem to be those that are
most suited for source-code-level testing, as they effectively
specify a reference implementation for these functions which
could be used as an oracle: Both the actual implementation

and the reference implementation extracted from the
requirements are run on the same inputs and their results are
compared to each other. The test passes if and only if they
match. Interestingly, these requirements also make up the
largest individual category in our sample.

IV. OPTIONS FOR INFORMATION RETRIEVAL

The analysis of requirements so far seems to indicate that
the information required for automatic requirements-based
testing is not provided in the available documents, or at least
is not provided in a concise manner. In addition, the
documents are usually written in natural language, the
interpretation of which by software is difficult.

Assuming that the information is available in the
documents in principle – which is not necessarily the case
(c.f. Sect. 0 –, there are several options for going forward.
All of these options come with additional effort and cost,
which must be weighed against possible improvements in
quality and cost savings due to the use of automatic testing,
and also against possible positive effects intrinsic to the
respective method.

In the short-term perspective, only manual extraction of
information seems applicable. This likely comes with
significant additional effort.

Automatic extraction of information from natural
language documents may be possible, but comes with its
own issues impacting the complexity and correctness of
interpretation. Natural language contains many constructs
that are simple for humans to decipher – such as implicit
references – but are difficult for software to resolve.

In a mid- to long-term perspective, more rigorous
structuring of SRDs and SDDs may lead to an improvement
of the situation. Again, this is connected to additional cost
for the authoring of these documents.

Another possibility is the formalisation of requirements
and design documents. The results from the MATTS
activity[1] hint at possible quality gains from the effort of
formalisation alone, even without the added gain from test
automation, but the size of the gains is still unknown. Also to
be considered is the decreased comprehensibility of formal
notation to the human reader, which may lead to
misunderstandings.

In general, any additional effort spent in authoring
requirements and design documents would fall into the
project phases before PDR and CDR, respectively. But
benefits could come from fewer issues during qualification
and improved product quality.

A. An Example

Let us once again consider the requirement from Sect.
III.B.3). How could we make that more clear to work with
when automatically generating test data?

First of all, we would need to get rid of the duplication in
prose. Second, we would split it into its functional and non-
functional aspects. Third, we would introduce some more
information into the pseudo code.

Keep in mind that the syntax is practically irrelevant –
except for the single requirement that it must be a formal
syntax, a syntax that can be automatically parsed. What is

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017
-9-

important is the semantic content and the fact that it can be
automatically extracted.

Let us see how that could look:
“The GPS_monitor_func shall
do

 If GPS_unit_X.status == active and AOCS_mode in
(Mode1, Mode2, Mode3) then

 GPS_X_validity_monitor = true
 else
 GPS_X_validity_monitor = false
 end
enddo”

The 8Hz repetition rate – the non-functional aspect – is
not present in this description. Depending on the intent of
this aspect of the requirement one could of course design a
way of specifying it. However, our focus shall be on the
functional aspects.

Note how the pseudo code gives the function – both in
terms of a procedure but also in terms of functionality – a
name: GPS_monitor_func. This name would not necessarily
be the name in the final source code, but it should be a
unique identifier which could be used to map the function or
functions in the code onto the requirement.

Similarily, GPS_X_validity_monitor, GPS_unit_X.status
and AOCS_mode are unique features of the specification,
which could be mapped to the respective elements of the
implementation.

V. CONCLUSIONS AND FUTURE WORK

The analysis of available documents – SRD and SDD –
indicates that they only contain part of the information
required for automatic requirements-based testing, even if
specific issues such as the form of representation of this
information is ignored. Some of the requirements are very
detailed and actually can be used for automatic testing, but
they cover only a small part of the actual functionality
described in the SRD.

There are several options for changing that situation in
the future, but they all come at a – yet unknown – cost, that
has to be balanced against the – also yet unknown – benefits.

In preparation for a cost-benefit-analysis, a simple
exercise shall be executed during the on-going FASTII-
activity, considering a small subset of requirements from a
reference project and manually deriving oracles from these
which can be used in the already established and to-be-
improved FAST[2] process to introduce requirements-based
information into the automated source-code-based testing
approach.

ACKNOWLEDGMENT

The results presented above are an intermediate outcome
of the FASTII activity, ESA Contract No.
4000116014/16/NL/AF/as.

REFERENCES

[1] H.-J. Herpel, G. Willich, J. Li, J. Xie, B. Johansen, K. Kvinnesland,
S. Krueger, P. Barrios: “MATTS – A step towards Model Based

Testing”, Eurospace Symposium DASIA’2016 “DAta Systems in
Aerospace”, May 10th-12th, 2016, Tallinn, Estonia

[2] R. Gerlich, R. Gerlich, M. Prochazka, K. Kvinnesland, B. Johansen:

“A Case Study on Automated Source-Code-Based Testing Methods”,
Eurospace Symposium DASIA’2013 “DAta Systems in Aerospace”,

May 14th-16th, 2013, Porto, Portugal

