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Abstract—Testing as a method of software verification is 

limited in that it can only prove the presence of defects, not 

their absence. To be useful, a large number of test cases may 

be needed, a strategy that is often in conflict with project 

constraints such as available time and funds. Test automation 

may be considered as an interesting approach to alleviating 

this conflict. However, test automation requires accurate and 

computer-accessible information about the system to be tested, 

both in terms of the interfaces by which the system is to be 

stimulated as well as the desired properties of these interfaces. 

Within the FASTII activity (FAST=Flow-optimised Automated 

Source-code based Testing) the possibility of deriving this 

information from available requirements and design 

documents is being investigated. Preliminary results of this 

investigation as well as suggestions for future changes in the 

process are presented in this paper. 

Keywords: automated software test, requirements-based 

testing, requirement semantics, test oracles, software defects, 
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I. INTRODUCTION 

Testing as a method of verification or validation is 
limited in its expressiveness by the fact that it cannot prove 
the absence of defects. Instead, absolute statements are only 
possible about the behaviour of a system for the test cases 
applied, but not for any other cases. 

Considering the internal structure of the system, the 
results may be extrapolated towards other cases using 
methods such as equivalence class analysis. Such approaches 
may be error-prone as they require theoretical, often manual 
reasoning about the actual limits of valid extrapolation. 

Statistical methods can be applied to estimate the 
reliability of the system, but in order to provide a sufficiently 
accurate estimate, they may require large numbers of test 
cases. 

At the same time, often project constraints limit the 
number of test cases which can be selected and applied 
within the confines of the effort allocated to testing. 
Specifically for manual test design, the number of test cases 
required for an appropriate reliability estimate may be 
prohibitively high. 

Automated software testing may allow for a reduction of 
the mean effort spent on a single test case, thus increasing 
the number of test cases that can be applied within the 
allotted frame of effort. 

It may also provide a more systematic means of selecting 
test cases, thereby enhancing the statistical representativity 
of the test results. 

However, automation of software test requires that the 
information needed for all steps of the test process are 
available in a manner that can be evaluated by an algorithm. 
In case of automated requirements-based testing, this 
specifically requires information about the actual 
functionality described by a requirement, but also about what 
stimuli would trigger the functionality associated with the 
requirement in order to ensure that there are sufficient test 
cases generated exercising each individual requirement. 

The FAST process (Flow-optimised Automated Source-
code based Testing) is comprised of a set of procedures and 
tools to be used for software testing using massive 
stimulation. A basic breakdown of the process is shown in 
Fig. I-1. 

Within the FAST process there are several levels of 
testing, each one building upon the previous one. 

The most basic level is that of massive stimulation, 
exposing the software to large numbers of stimuli with the 
goal of identifying general issues such as runtime exceptions 
or possible non-termination. While not aimed at functional 
verification, the evaluation results may very well point at 
functional defects. 

At the second level, a subset of the stimuli and the 
observed outputs are selected automatically as test case 
candidates. They are not actual test cases as the outputs in 
these test cases need to be confirmed against the 
requirements. They are also not selected with the goal of 
providing coverage regarding the requirements, so that the 
selected candidates may not sufficiently address the 
requirements imposed upon the software. 

Currently this confirmation and assessment of 
requirements coverage would have to be done manually. 

Within the FASTII activity we analysed the Software 
Requirements Document (SRD) and the Software Design 
Document (SDD) of a representative spacecraft on-board 
software in order to determine whether the information 
required for automated requirements-based testing is present 
in these documents and could be extracted, either manually 
or automatically. The results of this analysis shall be 
presented herein. 
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Fig. I-1: Automated Requirements-based Testing in the FAST Process 

This paper is structured as follows: In Chapter II, we 
provide terms and definitions, followed by a presentation of 
the results of an analysis of requirements and design 
documents from a reference project in Chapter III. In 
Chapter IV we discuss options for the retrieval of 
information, including options for changing the way 
requirements and design documents should be written, and in 
Chapter V we provide conclusions and an outlook on future 
work. 

II. DEFINITION OF TERMS 

Software testing aims to find faults in existing software 
by exposing the software – or parts thereof – to pre-
fabricated stimuli, observing the reaction of the software and 
ascertaining whether the reaction conforms to the expected 
behaviour of the software given the stimuli. 

Such a combination of stimuli and expected 
reactions/outputs is usually referred to as a test case. A set of 
test cases used in combination to test a specific part of 
software is referred to as a test suite. 

If the actual behaviour of the software matches the 
expected behaviour, the test case is said to be passed, 
otherwise it is said to fail. This result is called the verdict. 

The process of software testing consists of 
• the selection of stimuli, 
• the determination of the expected behaviour of the 

software under test, 
• the injection of the stimulus, 
• execution of the software-under-test, 
• the extraction of the actual reaction of the software 

under test, and 
• the determination of whether the actual behaviour 

of the software under test conforms to the expected 
behaviour. 

Algorithms that specify in a generic manner how to 
check the conformance of the actual reaction to the expected 
reaction are called oracles. 

Such oracles may also be incomplete or incorrect, 
meaning that they may flag test cases as failed although they 
succeeded – so-called false positives – or they may flag test 
cases as successful although they failed – so-called false 
negatives. 

False negatives may lead to defects staying undetected, 
which may be acceptable to a project up to a certain level. 
Essentially, even with a correct oracle, testing can never be 
free of false negatives. 

False positives lead to analysis effort without gain – a 
failure report needs to be understood without detecting and 
thus eliminating a bug. However, if the proportion of false 
positives is small enough, this additional effort may be 
outweighed by the effectiveness and efficiency gained by 
executing and evaluating a large number of test stimuli 
automatically. 

The reason for implementing an incorrect or incomplete 
oracle may be saved effort on the side of the oracle 
implementation: Sometimes the cost and effort for 
implementing a perfect oracle may be prohibitively large, 
while a good but imperfect oracle might fit within the budget 
constraints and still improve the effectiveness and efficiency 
of the testing process. Ultimately, the decision needs to be 
based on a balance of cost and effort. 

One specific property of testing in general and software 
testing in particular is that except for the simplest cases, 
testing cannot be complete and thus the absence of false 
negatives cannot be guaranteed. 

It may be possible to partition the input space into so-
called equivalence classes, where any stimulus from a class 
can be replaced by any other stimulus from the same class in 
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terms of bug detection. This would mean that given n 

equivalence classes, n test cases would be sufficient to detect 
any bug in the respective function. 

However, equivalence class testing in its pure form is a 
rather theoretical concept. Actually constructing equivalence 
classes regarding all possible bug types for a specific piece 
of code may be cumbersome and lead to a high number of 
equivalence classes which – although reduced in numbers – 
are as impracticable to test as the complete input space. 

Instead, the adequacy of a test suite is often measured by 
test coverage metrics. Such metrics express the degree to 
which the test suite exercises the relevant functionality of a 
piece of software. 

Most typically, structural test coverage metrics are used, 
which are based on the portion of structural code elements – 
such as statements, branches, conditions – that are reached 
and stimulated by executing the respective test cases. One 
example is statement coverage, which measures the relative 
proportion of all statements executed during the test. Another 
one is branch coverage, wherein the goal is to have each 
branch in the code executed in each of the possible 
alternatives. This is also called decision coverage. A variant 
thereof is modified condition/decision coverage – or MC/DC 
for short – where the test suite shall ensure that each of the 
individual parts – the conditions – of the boolean expression 
driving a decision has independently influenced the outcome 
of the decision.  

 
Fig. II-1: Generic Automatic Test Process 

Software unit testing is software testing applied to the so-
called unit level. The term unit usually refers to the smallest 
non-separable functional elements of a software product. 
Often these are the individual functions or procedures 
defined at code level, but a unit may also be composed from 
a group of such functions which are intended to be used in 
combination in order to provide atomic functionality. The 

latter is often the case when object-oriented methods are 
used in the design and implementation of the software. 

Automated software testing refers to the process of 
performing the task of software testing in an automated 
manner. Within this document, the term shall be used 
specifically to mean the full automation of the process, 
consisting of all steps of the software testing process. A 
possible generic design of such an automated software test 
process is shown in Fig. II-1. 

A stimulus generator selects test inputs, which are then 
injected into the element under test. As a reaction to the 
inputs, the element under test may generate outputs, which 
are passed on to the oracle. The element under test may also 
be queried for further results and the answers to these queries 
may be passed on to the oracle as well. The oracle also 
receives the original test inputs. 

When all this data is available to the oracle, it delivers a 
verdict, indicating whether it considers the test to be passed 
or failed. 

For all these elements to be executable by a computer, 
their rules of operation must be well-defined so that a 
computer – a non-sentient, mechanical device without 
additional knowledge – can execute them. 

III. ANALYSIS OF EXISTING REQUIREMENTS 

In order to determine whether the information as required 
for automated requirements-based testing could be found in 
typical SRDs, and whether extraction of that information 
could happen automatically, manually or in a mixed manner, 
we considered requirements from an SRD of representative 
spacecraft on-board software. 

Due to effort constraints only a subset of requirements 
was selected for analysis. In the specific case, the analysed 
requirements concern the interface between the central 
computer and the GPS receivers on-board the spacecraft. We 
believe that these are quite representative for interfacing 
requirements. 

A. Method 

The requirements were analysed for their semantic 
content concerning the functionality to be implemented in 
code. To identify a basic testing approach, the semantic 
content was elicited manually by answering a generic 
question for each of the requirements: When is the 
requirement violated? 

Besides being complementary to the approach taken to 
requirements definition during authoring of the document – 
where the requirements are usually written to express 
positive functionality – this analysis approach is also closer 
to the mechanism of software testing, which aims to reveal 
non-compliance by way of executing test cases. 

B. Requirement Classification 

In total, 87 individual requirements were analysed. Each 
of them could be assigned to one of six requirements classes, 
based on their contents. A list of these requirements classes 
together with statistics is given in Tab. III-1.  
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Category No. of Reqs. 

Functions 46 

Housekeeping 8 

Communications 19 

Monitoring 7 

Telemetry Generation 3 

Telecommand Handling 3 

Total 87 

Tab. III-1: Statistical Overview over analysed Requirements 

For each of the classes, a generic testing approach was 
defined. This testing approach not only defines a generic – 
sometimes very high-level – principle on how to test the 
requirements from the given class, but also allows a closer 
look at what information is needed to test the given 
requirements. Some examples – in simplified form – are 
given in Tab. III-2. 

Function requirements are defined in terms of pseudo-
code, each describing a specific subprogram, including its 
input parameters and results. 

Housekeeping requirements contain instructions for 
storing specific information upon fulfilment of specific 
conditions or occurrence of specific events for housekeeping 
purposes. 

Communication requirements concern the format 
conversion and routing of telecommand (TC) and telemetry 
(TM) packets. 

Monitoring requirements specify how the status of 
specific aspects of the system is to be monitored. This does 
not include any reactions to the change of status, such as TM 
generation or fault isolation and recovery. 

Telemetry Generation requirements specify that 
telemetry packets should be generated and routed to a given 
destination upon given events – e.g. regular clock ticks or 
specific triggers. 

Finally, Telecommand Handling requirements define the 
reaction towards specific telecommands being received. 

1) Example: Communcation Requirements 
Many of the requirements in the Communications 

category were found to be in this or a very similar form: 
“Upon receipt of the XYZ telecommand the Nominal 

Mode Software shall route the telecommand to GPS in 
accordance with the format and procedures specified in 
[REF_ICD].” 
Here, [REF_ICD] refers to an interface control document 

(ICD) that describes the format and procedures mentioned. 
A very basic understanding – if read by a human – 

reveals that according to the requirement, the nominal mode 
software shall convert any incoming telecommands of type 
XYZ to the format defined in the referenced ICD and trigger 
transmission towards the GPS. In how far the procedures 
defined in the ICD imply that additional steps are necessary 
– e.g. processing of acknowledgements, procedures for the 

initiation and teardown of communication, windowing, etc. – 
is not clear from the requirement itself, but hopefully would 
be when looking at the ICD. 

Let us break down the requirement into its parts. It 
consists of: 

 a condition/trigger: receipt of the XYZ 
telecommand 

 a subject: the nominal mode software 

 an activity: route to the GPS 

 an object: the telecommand 

 a qualifier: in accordance with the format and 

procedures defined in [REF_ICD]. 

Note that although structurally the qualifier seems to be 
merely an addition to the other elementary parts of the 
requirement, it can have immense impact on its 
implementation, as already indicated above. 

Let us for a moment forget the difficulties associated 
with natural language parsing like resolving indirect 
references such as “the telecommand” as present in the 
“object” part of the requirement shown above. Let us instead 
assume that this problem was solved – which it is not – and 
that we have already concluded that the XYZ telecommand 
is being referred to. 

In general, to test such a requirement, we need to initiate 
the given trigger or establish the given condition and observe 
whether the respective activity is executed, considering the 
aspects given by the qualifier. However, this is very general 
and clearly not yet on a level that can be translated into 
concrete operational steps. 

First of all, how and where is the XYZ telecommand 
received? We need to know where to inject it into the 
subject, which is the nominal mode software. This 
information clearly is not present within the requirement, and 
hopefully is to be found elsewhere, possibly in other 
requirements not explicitly referenced here. 

Also, what actually is the nominal mode software? How 
do we ensure that it is this software we are talking to? 

For example, the nominal mode software can either be 
implemented as a specific mode of an overall software 
image, activated or deactivated by an in-memory switch. 

It could also be a specific software image that is activated 
from the bootloader by directing control flow towards the 
entry point of this image after boot-up. 

These two cases require two very different actions from 
the side of the test setup – either setting the mode switch 
appropriately or ensuring that boot-up ends within the 
nominal mode software image. None of these are further 
specified in the requirement, so we would have to search 
elsewhere for this information. 

What does “routing to the GPS” mean and how do we 
verify that it is done? Usually it means sending out the 
packet over some specific communication channel to which 
both the computer running the nominal mode software as 
well as the GPS are connected. But which channel is this and 
how do we check for transmission via this channel? 
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Class Text Testing Approach 

COMM It shall be possible for the Nominal Mode SW to 
command both the nominal and redundant GPS units 
providing they are switched ON (as defined by the 
current satellite configuration vector). 

This requirement is violated if it is impossible for the 
Nominal SW to command GPS units which are switched 
on. 

Upon receipt of the "XYZ" TC of [TC_REF] the 
Nominal Mode SW shall route the TC to GPS in 
accordance with the format and procedures defined in 
[REF_ICD]. 

Proper conversion can be checked, e.g., by back-
conversion and comparison with the original. 

HK The data contents of the following GPS TM packets 
shall be stored within the system data pool: GPS 
Message TM, Primary Message TM 

These requirements can be violated by not storing the 
data from the respective TM packets in the system data 
pool or not storing them separately. 

FUNC This function process_GPS_data processes the raw GPS 
data. Its interface is summarised in Table xxx. 

The detailed description of the algorithm can be used to 
provide a reference implementation which can be used 
as an oracle. This function GPS__navigation_function shall generate 

the position and velocity in the inertial J2000 reference 
frame for the current time for the following cases: 

 … 

 … 

 … 

 It will be called at n Hz in modes A and B. Its interface 
is described in Table yyy. 

Tab. III-2: Example requirements with Classification

Further: Is it sufficient on software level to test whether 
the packet is passed on to the network driver, or do we need 
to monitor the actual hardware connection? What about the 
case when both are connected to a bus which also connects 
to other modules? Then we need to check addressing. How 
are packets addressed on the respective bus? Maybe the bus 
is marking message types instead of destinations, similar to 
the CAN-bus? 

We see that even if we were able to actually parse the 
sentence structure in a semantically meaningful manner, a lot 
of issues regarding the resolution of more specific 
information remain. The way the documents are structured 
now the expectation that this issue can be solved reliably by 
natural language parsing seems unreasonable. 

2) Low-level Function Specification 
Let us instead have a look at one of the function 

specifications found within the SRD. Such function 
specifications do not merely specify functionality, but 
instead concrete low-level subprograms, i.e. implementation 
details. It is somewhat odd to find these at the SRD level, as 
the Software Requirements Document would normally be 
expected to specify the problem space in terms of 
requirements instead of the solution in terms of an actual 
implementation. However, we will – again – forget this 
detail for a moment. 

Now let us consider one of these function specifications: 
“This function process_GPS_data processes the raw 

GPS data. Its interface is summarised in Table xxx.” 
The table referred to would then contain parameter 

specifications, listing for each parameter 

 the parameter name, 

 the parameter type, 

 the parameter direction (input, output or both), 

and 

 a description of the purpose of the parameter. 

The three first elements of the description represent the 
information typically specified for the parameters in the 
code. The name may even conform to typical restrictions for 
identifiers (no whitespace, starting with a letter, etc.) and the 
type might even be a formalized type name. 

This could then be followed by one or more individual 
requirements describing steps of the function implementation 
in pseudo code or prose, possibly switching from one to the 
other and back. 

Depending on the quality of the prose, such 
specifications should be convertible to so-called reference 
implementations. These implementations would reproduce 
the expected behaviour of the algorithm to be implemented, 
and therefore would allow to explicitly produce the expected 
output by simply supplying them with the designated inputs. 

One may of course wonder about the meaningfulness of 
such an approach. After all, when one can produce the 
reference implementation from the specification, why not 
use the reference implementation directly as the 
implementation in the target system? 

There may be several reasons why the reference 
implementation may not be suited for use as an actual 
implementation. 

The reference implementation may depend on the 
availability of features – such as libraries or calculation 
structures – that are not available on the target. For example, 
the reference implementation may be based on floating point 
arithmetic, while the target does not provide this capability 
and actual calculations on the target need to be done in fixed 
point arithmetic instead. 

Further, the way the reference implementation is 
specified may lead to a high computational time or memory 
use requirements which may not be feasible on the target or 
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within the given runtime environment. Therefore, the actual 
implementation may have to be a heavily optimised version 
of the reference implementation. 

And as a very basic modification that is necessary in 
almost all cases, the pseudo code has to be translated into the 
actual programming language used for implementation, 
which may lead to deviations between the implementation 
and the specification, and thereby imply the need for 
verification – e.g., by testing. 

For all of these issues, the function specification is a very 
useful reference oracle. 

3) Monitoring Requirement 
Sometimes, even requirements other than function 

specifications can be testable in an automatic manner, 
typically when they contain pseudo code as well. One 
example for such a requirement was lifted from the 
monitoring requirements class: 

“At 8Hz set the validity flags for the GPS Validity 
monitors to true if the corresponding GPS unit is active 
and the AOCS mode is Mode1, Mode2 or Mode3. 

If the GPS unit X is active 
  and the AOCS mode is Mode1, Mode2 
  or Mode3 
   GPS_X_validity_monitor = true. 
else 
 GPS_X_validity_monitor = false. 
end” 

Here, the second portion of the requirement essentially 
repeats the functional part of the prose at the beginning of 
the requirement in pseudo code. 

This of course implies the question about which part of 
the requirement is the normative one in case they should be 
conflicting – which is actually the case here. 

Consider the case that the GPS unit is inactive. The prose 
does not specify any action for that case. It only says that the 
validity monitor flags should be set to true if the GPS unit is 
active (and some other conditions apply). 

The pseudo code however explicitly specifies that in this 
case the validity flag would have to be set to false. Thereby it 
does specify a more strict requirement than the prose itself. 

Again, the pseudo code could be used as a reference 
oracle. Note that by expressing the requirement in pseudo-
code we can also provide a formal coverage criterion, such 
as MC/DC. The results of this approach can be seen in Tab. 
III-3. 

Test 
Case 

Input Output 

Status Mode Validity Validity 

1 active Mode1 false true 

2 active Mode2 false true 
3 active Mode3 false true 

4 active Mode4 true false 
5 inactive Mode2 true false 

Tab. III-3: Test Cases for the Monitoring Example 

Note that here the validity – the variable that is to be set – 
is also part of the input or rather the precondition. This way 
one can actually determine whether the value was modified 

by the function under test or whether it had already been set 
to that value before. This could theoretically be derived from 
the interpretation of the pseudo code. 

While we are considering what the function under test 
would be doing, we might notice that that function is never 
mentioned. This is not surprising, as this is a functional, but 
not a function requirement. How these monitoring checks are 
implemented is left to the designer – as it should be. 

4) Non-Functional Aspects 
Another aspect of the requirement considered in 3) is not 

covered by the pseudo code, but rather by the prose: The 
update frequency. 

The requirement can be understood in a way that 
specifies a minimum update frequency of (at least) 8Hz. To 
test that, one could establish a situation under which the 
validity flag would have to be changed to true, wait for 
125ms and then check whether the validity check has 
changed. 

However, formally the requirement does not specify that 
the system must react to a change in the situation, but rather 
should update the validity flag if – at the time of the update – 
the situation is such that the validity flag would have to be 
set to true. 

Let us consider this case: During the waiting period of 
125ms the GPS unit would become active, the AOCS mode 
would change to Mode1, and immediately afterwards would 
change back to Mode4. According to a possible 
interpretation of the requirement, the system would not need 
to detect changes at frequencies higher than 8Hz, so a 
conforming implementation would not be required to 
actually change the validity flag in that situation, but it 
would be allowed to, should the execution of the respective 
code happen during the short timeframe in which Mode1 is 
active. 

Vice versa, a short change from Mode4 to Mode1 and 
back would not necessarily require the system to change the 
value of the validity flag to true. 

The actual outcome depends on when the respective 
event happens relative to the execution of the update 
procedure. This is indicative of a race condition. Invisible 
Information 

This whole issue is resolved if one interprets the “8Hz” 
specified in the requirement not as an explicit real-time 
requirement, but rather as an information to the designer to 
plan sufficient computing resources for the update to occur at 
a frequency of at least 8Hz. In that case, the test engineer can 
rest calmly, because the non-functional requirement does not 
have to be verified by test, but can be verified by design and 
code review, e.g. of the scheduling tables. 

In discussion it was revealed that this indeed was the 
intention in this case. Unfortunately, such hidden 
information would not be available to a naive reader of the 
specification, as any machine performing natural language 
interpretation would be. 
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Fig. III-1: Typical Document Flow for Software

C. Design Analysis 

While the Function requirements do have quite a direct 
link to the source code due to the fact that they define 
specific functions, a link from the other requirements to the 
source code-level is less apparent. 

This is not surprising, as the SRD shall consider the 
software subsystem as an integrated system to be tested as 
such, and only specify what is to be implemented, not how it 
is to be done. The specification of the latter would be 
expected in the SDD. Therefore, the SDD was also analysed. 

In case of the documents at hand, the SDD was more 
descriptive than prescriptive in nature: It described the 
design of the software and was not written with the intention 
of it being a requirements document. As a consequence, no 
atomic requirements describing the functionality of 
individual functions could be identified. 

We considered whether the information from the SRD 
and the SDD could be joined via the information on tracing 
between both documents. However, the finest level of 
tracing found is at the level of individual code objects and 
functions back to the SRD requirements they implement. 

Information on what physical inputs to these functions 
would correspond to triggers for the functionality described 
in the respective requirements are therefore not readily 
available at the level necessary for automated requirements-
based testing at source-code-level. The only exception to this 
are the Function requirements already mentioned. 

D. Documents in the Process: The Larger Picture 

Looking at the larger picture we can confirm the 
suspicion that indeed according to current processes the SRD 

as a document is at the wrong level of detail for most 
attempts at requirements-based unit testing. 

Let us first take a step back and try to get a more general, 
conceptual understanding of the process of breaking down 
requirements in any engineering project, not just software 
engineering. At some top level, there need to be general 
requirements on what the system that is to be built is 
expected to achieve. These requirements essentially state the 
problem to be solved. 

In a first step, one would try to determine a most general 
solution and describe it from a very top-level perspective. So 
while the top-level requirements would describe, what is to 
be done, the design would describe, how it shall be done. 

However, as the top-level design is only concerned with 
a top-level perspective, it will have to be broken down into 
solution components. For a satellite mission these 
components could be the space, the operations and the user 
segment. For a satellite they could be the satellite bus and the 
payload subsystem. 

Here, the design again poses requirements – not to the 
system as a whole, but rather to the subcomponents. This 
means that a design is also a requirements specification, only 
for the levels of detail below it. 

Following this principle, the SDD should be both a 
requirements document and a design document. It describes 
a design of the software element of the whole system, and at 
the same time it imposes requirements onto that software 
element. 

In  
Fig. III-1 we see a typical document flow for a spacecraft 

development project according to the ECSS standards. 



 

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2017 
-8- 

Within the figure we find the typical refinement structure 
over the different levels of detail, starting from the system 
level, over the software element level to the individual 
software modules and the actual implementation. 

The root of all artefacts for the software is the Software 
Requirements Document (SRD) – shown as Software 
Requirements Specification in the figure – together with any 
relevant Interface Control Documents (ICDs). 

The SRD is primarily aimed at describing the problem 
space – although evidently, it may contain function and other 
requirements that actually describe the solution already quite 
in detail. Its connection to the actual software 
implementation is only indirect, incorporating the software 
architecture design and the Software Design Document 
(SDD) in its path. 

Conceptually, the SDD shall describe the solution, 
answering to the problem description in the SRD, and the 
software architecture design describes the breakdown of the 
implementation of the software requirements into software 
modules, as well as their interfaces. 

What we also see from the figure is that the Software 
Unit and Integration Test Plan (SUITP) is not directly 
derived from the SRD, but rather from the SDD. This is not 
surprising, as the Software Unit and Integration Test Plan 
needs to refer to software units, which are defined in the 
SDD, but not in any higher-level document. 

According to this logic, the proper document to search 
for requirements for unit level source-code-based tests would 
be the SDD. 

However, our analysis shows that the SDD currently 
seems not to be considered to be a requirements document, 
and therefore is not structured as one. Rather, it contains a 
description of the software design, without explicitly 
specifying functional or non-functional requirements 
imposed on the individual components of the software. 

Thus, no requirements to test against can be found in the 
SDD, but while the SRD would contain requirements, they 
are not generally expressed at a level suitable for use in 
requirements-based unit testing. The only exception to this 
are the Function requirements found in the SRD. 

E. Results 

The analysis of requirements for the specific application 
highlights the difficulty of writing requirements such that 
they express the intended functionality of the software in a 
way that can be verified, e.g. by test. Many requirements 
were not written with pass/fail criteria in mind, but the 
emphasis is rather on communicating to a software designer 
what is required in the software design. 

The results also show that there is a potential for 
formalisation based on common schemes. A large portion of 
the requirements analysed so far can be sorted into one of a 
few requirement categories, most of which are functional in 
nature and could be expressed using temporal logic 
formalisms. 

The Functions requirements seem to be those that are 
most suited for source-code-level testing, as they effectively 
specify a reference implementation for these functions which 
could be used as an oracle: Both the actual implementation 

and the reference implementation extracted from the 
requirements are run on the same inputs and their results are 
compared to each other. The test passes if and only if they 
match. Interestingly, these requirements also make up the 
largest individual category in our sample. 

IV. OPTIONS FOR INFORMATION RETRIEVAL 

The analysis of requirements so far seems to indicate that 
the information required for automatic requirements-based 
testing is not provided in the available documents, or at least 
is not provided in a concise manner. In addition, the 
documents are usually written in natural language, the 
interpretation of which by software is difficult. 

Assuming that the information is available in the 
documents in principle – which is not necessarily the case 
(c.f. Sect. 0 –, there are several options for going forward. 
All of these options come with additional effort and cost, 
which must be weighed against possible improvements in 
quality and cost savings due to the use of automatic testing, 
and also against possible positive effects intrinsic to the 
respective method. 

In the short-term perspective, only manual extraction of 
information seems applicable. This likely comes with 
significant additional effort. 

Automatic extraction of information from natural 
language documents may be possible, but comes with its 
own issues impacting the complexity and correctness of 
interpretation. Natural language contains many constructs 
that are simple for humans to decipher – such as implicit 
references – but are difficult for software to resolve. 

In a mid- to long-term perspective, more rigorous 
structuring of SRDs and SDDs may lead to an improvement 
of the situation. Again, this is connected to additional cost 
for the authoring of these documents. 

Another possibility is the formalisation of requirements 
and design documents. The results from the MATTS 
activity[1] hint at possible quality gains from the effort of 
formalisation alone, even without the added gain from test 
automation, but the size of the gains is still unknown. Also to 
be considered is the decreased comprehensibility of formal 
notation to the human reader, which may lead to 
misunderstandings. 

In general, any additional effort spent in authoring 
requirements and design documents would fall into the 
project phases before PDR and CDR, respectively. But 
benefits could come from fewer issues during qualification 
and improved product quality. 

A. An Example 

Let us once again consider the requirement from Sect. 
III.B.3). How could we make that more clear to work with 
when automatically generating test data? 

First of all, we would need to get rid of the duplication in 
prose. Second, we would split it into its functional and non-
functional aspects. Third, we would introduce some more 
information into the pseudo code. 

Keep in mind that the syntax is practically irrelevant – 
except for the single requirement that it must be a formal 
syntax, a syntax that can be automatically parsed. What is 
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important is the semantic content and the fact that it can be 
automatically extracted. 

Let us see how that could look: 
“The GPS_monitor_func shall 
do 

 If GPS_unit_X.status == active and AOCS_mode in 
(Mode1, Mode2, Mode3) then 

   GPS_X_validity_monitor = true 
 else 
   GPS_X_validity_monitor = false 
 end 
enddo” 

The 8Hz repetition rate – the non-functional aspect – is 
not present in this description. Depending on the intent of 
this aspect of the requirement one could of course design a 
way of specifying it. However, our focus shall be on the 
functional aspects. 

Note how the pseudo code gives the function – both in 
terms of a procedure but also in terms of functionality – a 
name: GPS_monitor_func. This name would not necessarily 
be the name in the final source code, but it should be a 
unique identifier which could be used to map the function or 
functions in the code onto the requirement. 

Similarily, GPS_X_validity_monitor, GPS_unit_X.status 
and AOCS_mode are unique features of the specification, 
which could be mapped to the respective elements of the 
implementation. 

V. CONCLUSIONS AND FUTURE WORK 

The analysis of available documents – SRD and SDD – 
indicates that they only contain part of the information 
required for automatic requirements-based testing, even if 
specific issues such as the form of representation of this 
information is ignored. Some of the requirements are very 
detailed and actually can be used for automatic testing, but 
they cover only a small part of the actual functionality 
described in the SRD. 

There are several options for changing that situation in 
the future, but they all come at a – yet unknown – cost, that 
has to be balanced against the – also yet unknown – benefits. 

In preparation for a cost-benefit-analysis, a simple 
exercise shall be executed during the on-going FASTII-
activity, considering a small subset of requirements from a 
reference project and manually deriving oracles from these 
which can be used in the already established and to-be-
improved FAST[2] process to introduce requirements-based 
information into the automated source-code-based testing 
approach. 
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