
- 1 -

Evaluation of Verification Tools Continued:
More Tools, More Software, More Aspects

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System and Software
Engineering

Immenstaad, Germany
e-mail: Ralf.Gerlich@bsse.biz, Rainer.Gerlich@bsse.biz

Jens Gerlach, Jochen Burghardt
Fraunhofer-Fokus,
Berlin, Germany

jens.gerlach@fokus.fraunhofer.de,
jochen.burghardt@fokus.fraunhofer.de

 Sergio Montenegro, Frank Flederer
Julius-Maximilians-University, Informatik VII

Wuerzburg, Germany
sergio.montenegro@uni-wuerzburg.de,

frank.flederer@uni-wuerzburg.de

Christian R. Prause
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Bonn, Germany
e-mail: Christian.Prause@dlr.de

Abstract—In a previous study six software verification tools
have been applied to a representative space software package.
The findings reported by each tool have been compared in
order to derive footprints regarding fault identification. In a
continuation three more tools were applied to the previously
selected application software and to another application
together with two tools previously used in order to broaden the
base of evaluation. More aspects were considered regarding
the evaluation of results: an additional evaluation criterion was
added and a comparison of reported defects with the outcome
of unit tests was performed. Due to a higher degree of
formalization and automation the manual evaluation effort
could be decreased while extending the number of considered
reports and the number of tools. The encountered evaluation
and verification issues are discussed in detail. All results
together shall provide a detailed view on the defect
identification capabilities of the considered tools w.r.t. current
software base. Altogether, the high quality of reports as
obtained in the previous study was not obtained again: in
context of a different set of tools and another (object-oriented)
language a lot of trivial reports were observed.

Keywords: verification tools, unit test, C / C++ software, false
positives, false negatives, software faults, fault identification,
fault coverage, fault report evaluation, software verification,
verification efficiency

I. INTRODUCTION
In [1] results of a first step towards evaluation of

verification tools were presented and discussed. In this paper
we provide results of a continuation of the tool evaluation
activities.

The conclusions at the end of the previous study
suggested broadening the base of the evaluation by
considering more tools and more application software.
Therefore another representative software package was
selected and three further tools were added to the set: Frama-
C, PC-lint and a commercial third one, for the disclosure of
which no permission was given yet. Due to the results of the
earlier activity regarding tools’ capabilities and applicability
to the space domain, three tools from that earlier evaluation
were not considered to be of further interest and were not
part of the present evaluation.

The recently obtained results are quite different from the
previous ones. While the amount of reports and their
classification as true and false positives was rather
straightforward in the first study, the number of reports was
significantly higher and their classification was rather
challenging. Not only the amount increased as such, but a
high number of trivial reports was observed not contributing
any value, but compromising heavily the recognition of true
positives in the large set of reports.

However, this observation shall not be considered as a
counter argument regarding the benefit of analysis tools. It
should be understood that a careful selection of tools is
required in order to maximize defect identification and
minimize the related effort.

The deeper analysis of the defect identification and
reporting mechanisms led to the conclusion, that just to buy
and apply a tool at the end of development is not sufficient.
In fact, a developer also can contribute a lot to reduce the
amount of reports on suspicious code, implying fault
potential, but not causing a risk in the current context.

A major point is the continuous use of such a tool over
the development period, which is not a new message, but it
has been confirmed again.

For comparison of results of analysis with unit testing the
tool reports were correlated with the results achieved by unit
testing to investigate how complementary or overlapping
both aspects of software verification are.

This paper is structured in the following manner:
In Ch. II principal terms are explained required to

understand the evaluation process and the results. In Ch. III
the evaluation context is described, as well as the software
and the tools used. The evaluation process is explained in
Ch. VI. Verification issues are discussed in Ch. V. The
evaluation process is described in Ch. VI. The evaluation
results are presented in Ch. VII. Lessons learned are
provided in Ch. VIII, and in Ch. IX conclusions are drawn.

II. DEFINITION OF TERMS
The terms relevant for understanding the evaluation

process are defined in this chapter.

Paper presented at DASIA‘2017, 30.05.2017
Eurospace Symposium DASIA'2017 "Data Systems in Aerospace", 30 May – 1 June, 2017, Gothenburg, Sweden

- 2 -

A. Tool Report
In the context of this paper a “tool report” is a message

issued by a tool indicating that one of its verification rules is
violated.

B. Defect, Fault, Error, Failure
A defect commonly refers to troubles with a software

product, with its external behavior or its internal features
(e.g., its maintainability). This includes consideration of the
risk of faults by potential changes of the context, which
could invalidate previous verification results. For details
please refer to [1].

C. Defect Types
Defects can be grouped into “defect types”, so that a

defect is considered as an instance of a defect type. Many
defects of the same defect type may be reported.

Defects of the same type may be called differently by
different tools. In consequence, for matter of comparison, the
terms used for a defect type in a tool report must be mapped
onto a standard defect type. This mapping may be automated
by mapping tables.

D. Criticality of Defect Types
Four criticality classes were introduced for the defect

types: critical, warning, uncritical and ignore.
“critical” means that the defect always manifests itself as

an error, “warning” that it may manifest case-by-case, and
“uncritical” that it is a software engineering issue only, not
manifesting during execution and impacting runtime
behaviour. Finally, “ignore” collects all other reports which
are not considered as useful at all, e.g. providing additional
explanation to another report, or highlighting a trivial case
which would not be subject of corrective maintenance at all.

E. Classification of Tool Reports
In general, a report is a message issued by a tool on a

supposed defect found in the software according to its defect
identification approach, usually based on violation of
verification rules.

A tool may fail to report a defect or may report a defect
where no defect is present. There are 4 distinct cases
depending on whether a defect exists or not and whether a
tool reports a defect or not (Fig.II-1).
 Code

Defect present Defect NOT present

Result
Defect Reported true positive, TP false positive, FP
Defect NOT reported false negative, FN true negative, TN

Fig.II-1: Classification of Tool Reports

The characteristics of a tool regarding its capabilities to
correctly report defects shall be described by two figures:

Sensitivity: it is defined as the quotient TP / (TP+FN).
Precision it is defined as the quotient TP / (TP+FP)
Sensitivity represents the portion of confirmed defects

(TP) in relation to the overall number of defects. As the
overall number of defects remains unknown, it is
approximated by the set of confirmed defects found by all

tools or by analysis in the context of manual assessment of
the reports.

Precision represents the portion of reported defects that
are actual defects compared to the number of issued reports.

F. Complementarity of Tools and Tool Combinations
A result of previous evaluation is that no tool can cover

all defect types: tools may be complementary or overlapping.
To maximize defect identification in the context of
verification in a project, especially for identification of the
tools being made mandatory in the Software Verification
Plan (SVP), it is essential to know which combination of
tools increases the sensitivity and how much.

The more tools are complementary, the higher is the
portion of unique contributions by tools.

G. Report Classification
For classification of tool reports as TP or FP two main

criteria were applied with two sub-criteria each (Fig. II-2):
• Criterion 1: tool criterion
• Criterion 2: state criterion
• Sub-Criterion 1: without context
• Sub-Criterion2: with context

The “tool criterion” was applied in the previous study,
and there it was the only one. The classification is purely
performed by answering the question “Is the tool right or
not”.

Now, in addition the “state criterion” was introduced to
consider whether an undesired state could result from the
reported defect. If so, the report is classified as TP, otherwise
as FP.

Cases may exist where the tool is right, but the resulting
state is still valid. A typical example is “while (1)”. In a task
body, this construct is frequently used and the non-
termination of the loop is intended.

Fig. II-2: Evaluation Criteria
Similarly, release of a resource may not be intended,

because the application will never terminate, so that the state
resulting from the endless loop or the not intended release of
the resource will either not be of relevance or not matter at
all.

These examples show that the state criterion is not an
objective criterion: the decision may depend on a supposed
intention or consideration of an extended evaluator-defined
scope not seen by a tool. Whether an undesired state will
occur, may also depend on the platform and the algorithm
implemented in the code.

- 3 -

Therefore it does not seem to be a suitable criterion to
compare the tools.

The decision on FP or TP may also depend on the
context as explained in the following section.

H. Context and Platform Dependency
The constraints imposed on the input domain of a

function, as spawned by the type ranges of its parameters
together with conditions or constraints imposed by its call-
context, is called “the context” of a function call. In case of
the sub-criterion “without context” the full input domain and
no other constraints are considered.

Different results may be derived depending on whether
considering the context is activated or not. The context may
constrain the input domain, so that a defect cannot be
activated or cannot manifest as error or failure. A report may
be considered as TP in the context of the full input domain,
but as FP in the context of an application imposing a limited
input domain.

The number of considerations can be minimized for
context-sensitive defect types due to the following
conclusions:

• In case of dead code and invariant conditions a TP for
the case “without context” implies a TP for “with
context”.

• Vice versa, for the other context-sensitive defect types
a TP for “with context” implies a TP for “without
context”.

The evaluation result also may be affected by the
properties of the platform (compiler, linker, processor, other
hardware), and the contents of the data when the suspicious
code is executed. So it may happen that an overflow in a
byte-operation is masked by the processor because it always
applies 32bit-operations, or a linker silently maps data with
same, but from different compilation units onto each other.

III. CHARACTERIZATION OF THE EVALUATION CONTEXT

A. Overview
Three out of the six tools used in the previous ESVW

study [1] were no longer included in the activity (they were
called “1/xxx”, “4/zzz” and “6/gcc” in that study). Instead,
three other tools were included in the current FSVW study:
FramaC, PC-lint and a tool called www for the time being,
yielding five tools in total to be considered. Tab. III-1 gives
an overview on the use of tools in both studies.
Unfortunately, not all names can be disclosed at this point.
Currently, we have not received a confirmation from the
vendor of Tool 5 / www in the current set to disclose its
name.

Further, another application software package (written in
C++) was selected. In order to achieve full coverage for the
current set of tools regarding the two software packages, all
current tools were applied to the Package 2, except for
FramaC, which currently does not support C++, and the new
ones also were applied to Package 1, yielding the matrix
shown in Tab. III-2.

As already done in [1] a subset of functions had to be
chosen to limit the manual effort for evaluation of the tool

reports.
For Application 1 26 functions were selected by fault

distribution (the ones with highest number of defects), 34
randomly. In case of Application 2 a first evaluation of
defect distribution vs. functions yielded no significant
accumulation of defects for certain functions like it was
observed for Application 1. Therefore it was decided to take
the cyclomatic complexity (CC) for selection. CC varied
from 1 to 16. Five groups were built according to CC and 60
functions were selected randomly from these groups.

Tab. III-1: Overview on Tools and Studies

Tab. III-2: Overview on Tools and Software Packages

B. The Application Software
Tab. III-3 shows the characteristics of both software

packages.

Tab. III-3: Characterization of the Software Packages

C. The Tools
The spectrum of analysis approaches as listed in Tab.

III-4 applied by the tools is quite broad, and defect
identification by the different tools is based on a number of
independent methods and implementations (Tab. III-5).

Tab. III-4: Spectrum of Analysis Approaches

- 4 -

Only those tools are listed there which are still in the set
of Study 2 / FSVW.

Tools 1, 2, 4 and 5 are static analysers, Tool 3 applies
dynamic analysis (automated built of the test and stimulation
environment).

Abstract Interpretation is used to approximate the
semantics of a computer program in order to soundly prove
certain characteristics of the program, e.g. the absence of
certain defect types.

Tab. III-5: Characteristics of Tools

For Automated Testing / auto-stimulation the software is
automatically stimulated with inputs and its behaviour is
monitored, e.g. by instrumentation. As not all possible
combinations of inputs can be provided, the method may
miss present defects, leading to FNs. However, any input
that leads to an error is a witness for the presence of the
respective fault in the code. FPsare only possible if
representativeness of the test platform is not ensured.

Symbolic Execution is a method used for analysis where
the software to be analysed is executed symbolically: Instead
of concrete values, symbolic variables are used. Similar to
actual execution, only a specific path through the software is
executed. In order to prove absence of a defect at a given
point in the code, all paths by which this point is reachable
have to be enumerated, similar to testing. As a consequence,
if complete enumeration is not possible, the method may
miss present defects, leading to FNs.

D. Tool Configuration
Every tool provides its own and specific set of

configuration options. Of course, the chosen set of such
options impacts the issued reports.

The applied configuration options are briefly described in
the following sub-sections.

1) Tool 1: FramaC
The value-analysis-plugin of FramaC (version Silicon)

was subject of evaluation.
In case of FramaC several attempts were required to find

a suitable configuration.
There seems to be no knowledge on trade-offs between

execution time and accuracy of results. Therefore the
configuration parameters slevel, plevel and ulevel were
reduced in three steps from the highest value down to a value
where the tool terminated its run within three days.

2) Tool 2: yyy
The same optimized configuration as in the previous

study (especially regarding a 32-bit application) was applied
to the C++ application with the following additional
decisions.

Reports on non-initialized class members were turned off
as they lead to errors which block further code analysis.

The tool failed initially and the software was provided to
the tool supplier. According to the feedback one function
was stubbed as work-around.

3) Tool 3: DCRTT
The same optimized configuration as in the previous

study was applied to the C++ application. However, three
runs were executed: the first one under consideration of
constraints on function parameters and global variables
regarding data ranges and size of arrays, collected
automatically, and with call of suitable initialization
functions, while for the second and third run such constraints
were removed stepwise.

The reason for execution of the additional runs was that
the constraints were also present for the “without context”-
case, and may hide reports, while intentionally the
constraints were inherently considered to reduce the number
of FP-reports for the “with context”-case.

4) Tool 4: PC-lint
The standard configuration of PC-lint was applied. Only

the options for the maximum width for integer and float were
set to 32-bit (-si4 -sp4), as the application was written for a
32-bit processor.

Although PC-lint offers the opportunity to switch off
report types on a case-by-case basis, this capability was not
applied. Instead in the course of the mapping of tool report
types onto standard defect types, report types which were
considered as irrelevant were mapped onto an additional type
“DefectTypeIgnored” in order to get rid of such reports in
the course of manual evaluation..

5) Tool 5: www
The standard configuration for this tool was used, except

for raising the dataflow analysis level to the maximum.

IV. TOOLS VS. UNIT TESTING
The intention of a comparison between results of tool

analysis and unit testing should clarify what the benefit of
each of the approaches is, and whether they are
complementary or overlapping, and if so to which degree.

A. Overview on the Approach
For each (executable) line of the source code a marker

was added indicating
• whether the line was covered by a unit test at all, and

in detail,
• by which unit test out of the whole set,
• whether the line includes a “normal” statement /

expression or a condition, and
• if available, information was added whether an

exception or a defect was detected during a unit test.

- 5 -

Cross-module coverage was considered, i.e. if a unit test
did not only generate coverage in the function-under-test, but
in the call tree as well.

The stream of lines of an application, either for the whole
set of functions, or the selected subset, formed the basis for
correlating the tool reports with coverage results from unit
tests. This way, contributions from unit tests and analysis
tools were compared.

If a tool reports a defect for a covered line, obviously the
defect was not detected during the test. Vice versa, if a defect
was detected during unit testing, but not by analysis, then a
tool is not sensitive for this defect.

In consequence, the more either a tool reports or a test
highlights a defect, but both do not for the same defect and
the same line, the higher the complementarity of analyses
and unit testing.

As (additional) contribution by tools the following 2
cases are considered:

• If a line was covered and a TP was reported for this
line, then the defect can be assumed not to be
detectable by a unit test.

• If a line was not covered and a TP was reported for this
line, then the analysis brings an added value by
reporting a defect for a location, not addressed during
unit testing.

Vice versa, as additional contribution from a unit test with
respect to tools the following case is considered:

• If a line was covered and a defect or an exception was
detected during a unit test, but no tool issued a report
for this line, then this is a valuable contribution by unit
testing.

Further, coverage as such can be compared:
• Is missing coverage confirmed by a “dead code”

report or not?
• Does a tool report “dead code”, while coverage was

achieved?
Different scenarios may be applied for these

considerations taking TP from tool analyses, then possibly
leading to different results: was the TP a matter of “with
context” analysis, from “without context” analysis, or both,
and which context was considered during unit testing.

B. Application 1
The unit tests were already performed for 362 of 610

functions, and detected defects were removed successively.
For 248 functions no unit tests were executed as these
functions were auto-coded, and test of a few of such
functions was considered as sufficient. However, by the tool
reports principal issues in the code generator were detected,
mainly related to fault handling, suggesting that more or
even all auto-coded functions should have been subject of
unit testing.

As the idea of correlating unit tests and analysis reports
came up after completion of unit testing, the information
about detected defects was not recorded.

Therefore in case of a covered line, either a defect
already detected during a unit test was not fixed, not detected
or not detectable.

The tool used for the unit tests was VectorCAST [2]. It
was also used for retrieval of the unit test information in a
format suitable for the merge with report information

C. Application 2
The unit tests were established as part of the study, but

due to budget limitations only for the subset of (60) selected
functions. The information on defects and exceptions was
recorded, but only a few defects were detected, actually. In
all cases at least one of the tools reported the issue, too.

The tools used for unit testing are cppunit [3] and gcov
[4].

V. VERIFICATION ISSUES
The results of the previous activities were discussed with

tool suppliers and software developers. The contents of such
discussions are briefly listed below, followed by conclusions
on the evaluation criteria. The discussion highlights principal
issues of report classification, also driven by the high
number of trivial reports observed in the recent study.

The issues related to tool vendors are mainly a matter of
FNs, while the discussion with developers focus on FPs.

In addition, pro’s and con’s regarding unit testing,
verified-by-use and analyses are discussed in order to get a
clearer picture about which verification approach may be
appropriate regarding required dependability and implied
costs.

A. About False Negatives
The general point of discussion is under which

condition(s) a missing report may lead to an FN for a tool.
In the previous study, the criterion 1 / tool criterion was

applied to investigate which defects can be reliably found by
a tool, focusing on whether a report is justified or not.

If a tool is right, the lack of a report from another tool
must be considered a FN.

Tool suppliers argued that the FN originated in
conditions imposed by the tool that would preclude the
respective fault to be activated. While these conditions were
not present in the original code, the vendors pointed to the
documentation of such assumptions justifying the lack of a
report. If such documentation was missing, this was an issue
of the documentation, but not of the tool, the vendor argued,
and as such should not be considered an actual FN.

Our position is that if a tool does not report a fault
because, although the error can be activated under the
circumstances imposed by the code itself the tool imposes
additional constraints, then an actual fault is not being
reported due to aspects solely to be blamed on the tool. As
such, the lack of a report is to be considered a FN. Whether
the reason for that FN can be explained or even is
documented or not is irrelevant.

This discrepancy in opinions led to the vendor blocking
publication of the tool name.

However, if the tool can be configured not to impose the
restriction, then care is to be taken before marking down the
lack of a report as a FN, because a user can modify the
configuration so that the fault could be detected.

- 6 -

Still, if the additional assumption normally blocking
detection of the fault is enabled by default and must be
explicitly disabled by the user, this needs to be considered in
a critical manner. The question arises whether a user would
be sufficiently aware of such a default assumption. The
documentation for such tools is often already very extensive
so that realistically it is not useful to assume that a user will
understand and keep in mind all the consequences such
assumptions would have.

It may be essential for a tool supplier to distinguish
whether the source of the FN is related to the environment
built by the tool, constraining detection, or the algorithm
applied for detection, especially when the tool supplier
claims that the algorithm can ensure absence of FN. For the
user, the reason is irrelevant.

Also, a case was observed in the recent study in which a
report was not issued although it ought to be according to
documentation. Obviously, there is discrepancy between
documentation and implementation.

To summarize: any fault not being reported must be
considered a FN, independent of the reason for the lack of a
report.

B. About False Positives
The main concerns about FPs are coming from

developers, claiming that the reported defects would not
cause a failure of the software – even if the tool is formally
correct.

Cases were observed – not in the reference studies, but
for other applications, where the implemented logic was
completely wrong, but incidentally for the few parameter
sets given the results was correct.

The big challenge is that the number of reports related to
suspicious code is – as a matter of experience – much higher
than the ones related to clear TP. This implies a high
overhead for the analysis, which would not occur if
suspicious code were not present or was even avoided, e.g.,
by using the tools right from the beginning and considering
their feedback.

However, it has to be admitted that also a tool may be
originator of a significant number of trivial reports (see the
discussion in Sect. C below and in Ch. VIII.B), which result
in TP according to the tool criterion, but could be considered
unjustified. Then proper measures have to be undertaken to
avoid an overhead.

In part, such reports may be put in a separate category
“ignore”. But this is not possible in every case. “Loss of
precision” turns out as uncritical in most cases. However,
amongst such a set one report may evaluate to a critical TP
(the reader is reminded of the incident during Ariane Flight
501, the maiden flight of Ariane V – coincidentally the
trigger for the creation of some notorious static verification
tools). If the whole set would be ignored, then the critical
report would be lost. This is not acceptable. Therefore other
measures need to be considered.

The comments of developers to TP according to the tool
criterion were mixed, ranging from immediate acceptance
(considering it as a violation of best practices) to rejection
because the probability of the system state being

compromised was assumed to be sufficiently low or even
zero, although not being compliant with best practices.

However, the essential point is: usually it is not known in
advance whether the result does not lead to unwanted states,
while a negative impact is possible in general. A valid
conclusion can only be drawn after – manual – analysis.

Therefore the principal options are:
• to ignore/drop a report and take the potential risk,
• to do the analysis and decide after whether to fix or

not, or
• to do the analysis and to fix the issue, and/or to try to

avoid similar issues in future.

C. System/ Context-immannent False Positives
In some cases it is reasonable that a tool frequently

produces a FP if it does not have – sufficient – information
on the context. In many cases it is even impossible to
provide this information on language level. Amongst such
cases are: resource leaks and loss of precision.

However, a tool may support provision of meta-
information to suppress such FP-reports.

D. Verified-By-Use vs. Verification by Analysis
In the discussion with developers frequently the issue of

a high number of FPs – in the sense of the state criterion – is
addressed, doubting the added value coming from analysis
tools like the ones under consideration, and claiming that
most of the reports issued by such tools would actually result
in FPs.

In the discussion it is important to understand that the
state criterion does not deal with probabilities: If it is
possible to enter an undesired state as per the state criterion,
the report has to be considered a TP, independently of the
probability of occurrence of such an event. For the study, the
reasons for this are pragmatic: Neither is the probability
distribution of the inputs known nor was a limit probability
specified below which events can be considered seldom
enough not to be considered.

However, the same problems occur in practice as well:
Typically, at least one of these items of information is not
formally available.

Still, low probability of occurrence can only be a valid
defence against a fault report if proof can be provided that
the probability is small enough.

According to the experience obtained so far – not only in
the course of the ESVW and FSVW studies, but also in
context of analysis activities in other projects – the essential
point raising such discussion is that the verification goals are
not precisely defined, if at all.

Then – as a consequence – the use of analysis tools is not
harmonized with the development process, leading to
overhead and missing acceptance of the tool reports.

When a decision is made towards use of analysis tools,
an integrated approach needs to be defined prior to any tool
usage, addressing

1. definition of criteria for TPs,
2. definition of the fault removal process,
3. selection of suited tools considering required

criticality criteria,

- 7 -

4. continuous tool usage in the development process,
5. definition of report processing to reduce the manual

effort, possibly including pre-processing and filtering
of raw reports.

All these steps are a pre-condition for successful tool
usage. Dropping any of them suggests that either

• use of tool analysis implies an overkill regarding the
real needs,

• (possibly) unacceptable risks are tolerated, or
• efficiency of verification suffers.
The more of above process steps are dropped, the closer

the envisaged verification process comes to verified-by-use,
while the costs of verification remain much higher as for
verified-by-use.

To support the clarification process regarding what is the
proper approach, the approaches are briefly characterized.
The provided arguments may be used as a checklist.

As unit testing is later compared to analysis it is also put
into the list.

• unit testing
o demonstration of compliance with requirements

focusing on functional aspects
o limited subset of input domain, coverage-driven
o verification goal is to pass the (possibly

requirements-based) tests
o currently requires major effort at limited

predictability on future defect rates
• verified-by-use
o demonstration that software does properly work for

a given, but probably unclear scenariofocusing on
functional aspects

o implies that software was sufficiently exposed to
such a scenario

o possibly enhanced compared to UT due to extended
set of conditions

o lean approach at limited predictability on future
defect rates

• static and dynamic analysis
o aiming to demonstrate presence or absence of faults
o considers large set of conditions
o applies increased capability to detect defects, but

still not perfect
o provides capability to look beyond scenarios as used

for UT and verified-by-use
o may imply overhead if improperly applied.

To summarize:
If you want to know that the implementation is correct,

i.e. that you can expect always correct results under
arbitrary conditions, then do apply a rigorous verification
approach like static and dynamic analyses do support.

If you just want to know that you will get correct results
under current conditions, although only partially or fully
unknown, then unit testing or verified-by-use should be
sufficient.

VI. THE EVALUATION PROCESS

A. The Overall Process
Due to the experience obtained in the previous study a

simplified and slightly modified process flow (Fig. VI-1)
was applied.

Fig. VI-1: Logic Flow of the Evaluation Process
Now, in a first step every tool is applied to the software

and the reports are extracted and immediately classified as
either true or false positive, not trying to correlate them with
reports from other tools, thereby allowing parallel evaluation
of tool reports. Then in a second step all reports are merged
into a single stream, correlating reports from different tools
about the same alleged defect, automatically, while this step
was previously done manually.

After the merge – automatically – FNs are identified for
tools not reporting a TP in contrast to other tools.

Then evaluation scripts are applied on the consolidated
list to derive statistical figures regarding similarities or
differences.

The tool and state criteria were applied for all new
analyses, i.e. to all analyses related to Application 2, and all
analyses performed with FramaC and PC-lint on Application
1.
B. Standard Defect Types

Due to use of another programming language – C++ for Application 2
instead of C for Application 1, a different programming style, and two
additional tools, more standard defect types (onto which all the specific

messages from all the tools are mapped) were identified: 40 (plus an ignore
category) instead of 20 before.

Tab. VI-1 and Tab. VI-2 show the previous and current
distribution of defect types vs. criticality and the number
tool-specific defect types. Tab. VI-3 provides the list of
current standard defect types together with the criticality.
Yellow rows indicate new defect types. The total number of
considered tool messages is 371, i.e. about 74 messages per
tool on the average and nearly 2 specific defect types per tool
and standard defect type.

- 8 -

Tab. VI-1: Identified Defect Types vs. Criticality, Summary

Tab. VI-2: Identified Defect Types vs. Criticality, Detailed

Tab. VI-2 gives detailed figures on the distribution of
tool defect types and standard defect types vs. criticality for
each tool.

C. Automation
The results of the previous study suggested that a higher

degree of automation is urgently needed for processing of the
large amount of tool reports, either to complement missing
information, to harmonize reports from different evaluators
or to merge and compare contents of reports.

For example, in part, function names are provided by
tools, to the other part file names and line numbers. The
missing information can be added automatically, and all
reports can be put on the same contents of information.

In case of C++, the full signature of a function may be
provided. Other tools may provide mangled names for
unique identification of C++ functions. Such differences can
be harmonized automatically, complementing the missing
part.

For some defect types the result is identical for with and
without context cases, for the tool and state criterion alike, so
that the justification can be shared between both cases,
automatically, either filling in the fields or – if already filled
in – checking manually inserted decisions for consistency.
More such rules have been identified and applied.

Further, the determination whether a function is called in
context of the application or not was previously done
manually. Knowledge is required about whether context has

Tab. VI-3: List of Standard Defect Types
to be considered or not. Due to available parsing information
the provision of this information also could be automated.

And there are still more steps which were automated.
The implemented functionality on automation should not

only be useful for tool evaluation, but should also be
beneficial for (real) projects needing support for analysis of
tool reports.

The challenges are the same for tool evaluation and tool
usage: identification of the critical issues from a probably
large stream of reports.

The formalization of a number of steps of the evaluation
process – a pre-condition for automation – also allows to get
a clearer view on the tool reports while limiting and reducing
the amount of manual effort. This work still can and shall be
extended in future. It is a pre-condition for detailed
evaluation of larger quantities of code and tools.

VII. THE EVALUATION RESULTS
Remark: The results presented here strongly depend on

the application. Defects which do not occur in the chosen
applications will not be considered. Therefore the results
may not generalize to any other context.

In contrast to the previous paper no figures on sensitivity
and precision are provided here, for reasons already

Defect Type Criticality
Array Index Out-of-Bounds critical
Dangling Pointer critical
Dereference of Invalid Pointer critical
Dereference of NULL-Pointer critical
File Access Error critical
Invalid function pointer critical
Invalid Return Statement critical
Loss of Precision critical
Macro Use with Unintended Consequences critical
Non-terminating Loop critical
Passing Invalid Argument to Standard Library Routine critical
(Possible) Recursion critical
Resource Leak critical
Undefined Result critical
Uninitialized Variable critical
Unintended Use of Implicit Member Function critical
Arithmetic Operation on NULL Pointer warning
Arithmetic Overflow warning
Cast to pointer of incompatible types warning
Comparison of floating-point values warning
Conflicting Declarations warning
Incomplete List of Cases for enum-Type w/o default warning
Intended Change of Invariant Data warning
Invariant Condition warning
Invariant Expression warning
Loss of Update warning
Name overloading warning
Parameter Type Mismatch in Function Call warning
Timeout during Execution warning
Unnecessary Loop Construct warning
Unnecessary Operation warning
Unreachable Code warning
Unused Result warning
Change of Data expected, but missing uncritical
Incomplete List of Cases for enum-Type with default uncritical
Inconsistent Overloading uncritical
Multiple return paths uncritical
Security Issue uncritical
Unintended Change of Data uncritical
Ignore ignore,

don’t care

- 9 -

mentioned. Instead, information is provided which
sufficiently characterize the tools.

The tables and graphics provide a lot of information, so
that a reader can get an idea on a tool’s capabilities. A
detailed discussion of all aspects related to this information
would go far beyond of the scope of this paper. Therefore the
most interesting and important aspects are discussed, only.

A. Overview on Reported Defects
Tab. VII-1 provides an overview on the number of

reports per tool.

Tab. VII-1: Overview on Tool Reports for both Applications

The rows of the tables show
• all, raw:

the initial number as issued by a tool, without having
applied any steps for reduction

• all:
the number after having applied tool-specific measures
for reduction

• selected:
the number relevant for the selected 60 functions
derived from the all-figures,

• ignored:
the number of ignored reports

In case of Application 2 and DCRTT three runs were
executed to see the impact on different configurations:

1. without injection of NULL-pointers, but with call of
suitable initialization functions,

2. with injection of NULL-pointers, but with call of
suitable initialization functions,

3. with injection of NULL-pointers and without call of
suitable initialization functions.

The impact on the number of reports as such is not so
high. However, there are differences in the reports. E.g.
when an index-out-of-bounds was reported in run 1, in run 2
a NULL-pointer dereference was reported, excluding the
report on index-out-of-bounds, yielding still one report, only.

In case of Application 1 the raw figure of FramaC was
reduced by mapping equivalent messages from different call-
paths onto one entry, using file, line and report text for

compressing. However, different independent reports related
to the same triple will be mapped on the same entry, too, e.g.
in case the same message was issued for the left and right
part of an expression.

For the selected case this impact can be compared and
yields about 6 missed entries (~6% of the total number).

In case of Application 2 the raw number of PC-lint was
reduced by dropping all reports which are classified as
negligible by the mapping tables established for every tool.

B. Profiles
Tab. VII-2 shows the distribution of the reports (not of

the TPs) over the criticality classes for both applications and
the full set and the subset of 60 functions.

A reader should bear in mind that the figures show the
percentage regarding the set of standard defect types a tool is
supporting (as shown in Tab. VI-2). E.g. all supported
standard defect types of FramaC are either critical (8) or to
be ignored (1). Therefore the percentage shown for FramaC
amounts to ~89% for critical defect types.

These figures just give an impression on the distribution
of supported defect types per tool over criticality w.r.t. the
overall number they are supporting. They should not be used
for direct comparison of tools.

Tab. VII-3 and Tab. VII-4 show the profiles regarding
the standard defect types for both applications and the full set
and the subset. For Application 1 more critical defect types
are covered than for Application 2. Vice versa, it is for
criticality “warning”.

The figures also show that the spectrum of the subset is
not representative for the full set. This result led to a
reconsideration of the selection process based on functions
performed prior to report analysis. Due to automation of the
process it shall be possible in future to select samples by
defect types according to the overall profile.

Tab. VII-5 and Tab. VII-6 compare the distribution of
TPs between the tool and the state criterion. It is obvious that
some defect types remain at nearly the same amount, while
others disappear for the state criterion.

Please note that the decisions derived for the state
criterion were based on different interpretations of the state
criterion by the evaluators as discussed below.

Tab. VII-7 gives average figures on the four different
transitions for both applications. As an FP for the tool
criterion implies an FP for the state criterion, a transition
FP/tool⇒TP/state is not possible.

The most interesting transition from a developer’s point
of view – worrying about unjustified tool reports – is
TP/tool⇒FP/state, which is highlighted in yellow colour.
While the percentage for TP/tool⇒FP/state is nearly the
same for both applications, it is quite different for the two
remaining transitions.

The reason for the big differences needs further
investigation. As already mentioned, this may be a matter of
individual interpretation, but it may also depend on the
application. Tab. VII-8 gives an impression on the broad
range of individual decisions, ranging from about 13% to
80% for TP/tool⇒FP/state.

- 10 -

Tab. VII-2: Criticality Profiles of Tools

Tab. VII-3: Comparison of Tool Profiles for Both Applications, All Reports

Tab. VII-4: Comparison of Tool Profiles for Both Applications, Report Subset

- 11 -

Tab. VII-5: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 1

Tab. VII-6: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 2

Tab. VII-7: TransitionsTool⇒State, Average, Both Applications

Tab. VII-8: TransitionsTool⇒State, tool-specific, Application 2

- 12 -

In order to understand what the reasons, the evaluators
were asked on details of their decision. While in case of
FramaC only the “while(1)”-case was considered to turn a
TP/tool to an FP/state, in case of www an extended context
was considered, based on the knowledge that in the
application pointers or data are initialized in a context, not
visible to a tool.

This feedback indicates a need to refine the definition of
the state criterion. However, a deeper analysis of the data –
not presented and discussed here – suggests that both criteria
still do not cover extreme cases of reports, which do
invalidate the overall evaluation if they occur at a high rate
compared to other reasonable reports.
C. Uniqueness and Complementarity of Tools

In the previous study the possibility to increase
sensitivity due to combination of two tools was
demonstrated. Due to questionable reports which for the time
being cannot be removed from the criticality categories
“critical” and “warning” because this would have to be done
manually case-by-case, the results for sensitivity would be
questionable, too.

The current conclusion on this dilemma is that possibly
an earlier separation on the level of tool defect types may
help, i.e. to map questionable defect types immediately into
the ignored-group. Later, having mapped them already on
standard defect types, it is not possible, because also
reasonable reports would be moved, too. As removing
reports is a very sensitive decision regarding evaluation and
comparison of tools, a deeper and more careful consideration
is required.

Tab. VII-9: Coincidence Profile for Both Applications
The content of Tab. VII-9 may help to understand the

issue. While in case of Application 1 about 25% of the
reports are shared with 2 or more tools, for Application 2 the
equivalent figure is less than 2%, i.e. the difference amounts
to about one order of magnitude.

In consequence, in case of Application 1 about 75% of
reports are unique contributions of a tool, while the
equivalent figure for Application 2 is about 98%.

This latter figure suggests (and this is confirmed by other
data not shown here), that most of the many unique
contributions may not be considered as useful, supposing
that a higher percentage of reasonable reports should be
shared.

Tab. VII-10 provides the list of observed combinations for
which tools share the same report, i.e. they report the same
standard defect type for the same file and line.

While in case of Application 1 up to 4 tools shared a
report, the equivalent figures amounts to 2 tools only, in a
very few cases.

Tab. VII-10: List of Tool Coincidences

D. Unit Tests vs. Tool Reports
In order to compare the impact of unit tests to the results

of analyses regarding defect detection, both data streams
have been synchronized using filename and line number.

Coverage information per line together with additional information on
observed exceptions or defects found is shown for unit testing. In the unit

test block at the bottom of
Fig. VII-1 three are three rows:
• The lowest row represents the line type: gray/normal

or black/conditional expression.
• The middle row indicates the coverage: red/no

coverage, green/full coverage, blue/false covered,
yellow/true covered.

• The upper row indicates whether an exception
occurred or a fault was detected: red/exception,
magenta/fault.

Then the 5 tools follow bottom up with 4 traces each
related to the 4 combinations of criteria and context.

From the analyses the false and true positives related to a
line are shown for each of the 4 combinations resulting from
with/without context and tool and state criterion using 3
colours:

• yellow/false positive
• red / true positive
• blue /true and false positive are reported for a line

This allows to seeing where tools reported FP or TP for a
covered or non-covered line.

As in case of Application 1 all defects found during the unit tests were
already fixed, neither defects nor exceptions occurred, and 4 exceptions in

case of Application 2 (3 of them shown at the bottom trace of
Fig. VII-1).
Tab. VII-11 provides information on the unit tests for both

applications. In addition, figures were added for robustness
testing as done by DCRTT. While unit testing primarily
addresses coverage and compliance with requirements,

- 13 -

robustness testing aims to provoke activation of defects by a
large number of test stimuli.

Tab. VII-12 provides figures on the distribution of TP as
reported by the tools over covered and non-covered lines, for
the 4 combinations of criteria and context cases and for both
applications. Surprisingly, the probability to find a TP in a
covered line is about two times higher than to find a TP in a

non-covered line. This needs further investigation. It may be
a matter of complexity of the code.

Also, more detailed figures on the defect profile
regarding covered and non-covered lines should be derived
to get a better understanding why the TP were not detected
by a unit test.

Tab. VII-11: Overview on Figures of Unit and Robustness Testing

Tab. VII-12: TP Reports vs. Coverage

Fig. VII-1:Merge of Tool Reports with Coverage Information from Unit Testing

Legend
www

PC-lint

DCRTT

yyy

none (Appl.2)

UT

- 14 -

The presence of TP in covered lines leads to the
conclusion that to a major degree unit tests and analyses are
complementary. This applies to static and dynamic analysis.

As usually the goal of unit testing is to prove fulfilment
of requirements (in a positive manner) – apart from
requirements requesting fault injection – and the goal of
analysis is to positively determine whether defects are
present or not – valid for static and dynamic analysis, this
result is not surprising.

Whether the absence of defects for lines for which the
tools issued reports while no defect was detected or left as a
result of unit testing, indicates an overhead induced by tools
needs to be subject of further investigations.

A user of Application 1 reported that the application
behaves quite stable. As some of the critical defects detected
by analyses are related to the error handling parts, this seems
to be reasonable. Also, it indicates the added value of
analyses, pointing to critical locations not yet detected,
compared to unit testing and verified-by-use as discussed in
Ch. V.D.
VIII. LESSONS LEARNED

Due to the additional application software with different
programming styles and another programming language and
due to the additional tools more issues had to be tackled to
get a common view on the evaluated tools. Compared to the
ESVW study the evaluation was highly challenging and
several issues of evaluation could not be closed. In case of
Application 2 a fair view on the tools could not be achieved
due to the heterogeneity and – in part – poor quality of the
reports due to a high number of trivial reports.

A. Defect Types
New defect types were found by the new tools, the new

language and the new applications, because the list of defect
types as outcome of the previous study did only reflect the
status of Application 1 and the applied tools.

In fact, the number of defect types was doubled from 20
to 40 and it can be expected that it will grow further if the set
of tools and the set of software applications will be extended,
again.

The mapping between tool-specific messages and
standard defect types had to be automated to be more
flexible in the mapping process and to save effort.
Automation of this step also supports a consistent
redefinition of the mapping regarding already existing tool
reports.

At the beginning – in ESVW – there was nearly a 1:1
mapping between tool-specific defect types and the standard
defect type. Although the naming of defect types differed
from tool to tool, only one tool-specific type was mapped on
a standard defect type per tool in most cases. However, by
the new tools this changed a lot.

B. Evaluation Criteria
An analysis of the obtained results yields that still the

two applied criteria are not sufficient to get a clear and fair
picture regarding the position of the tool supplier and the
developers:

The tool criterion is an exact criterion regarding whether
the tool report complies with the content of the source code.

However, it may also cover trivial cases, yielding TPs
which may be considered as unjustified. Especially when
many such reports are issued by one tool but not by others, a
fair comparison is not possible. Counting only the TPs would
give such a tool a significant advantage compared to a tool
not reporting such a trivial case, or even intentionally
reducing the amount of reports for such a case.

The state criterion attempts to exclude trivial cases of
getting an unjustified TP, but it turned out that there is a
wide range of interpretations by individuals possible.

This disqualifies the criterion for comparison of tools,
unless it is guaranteed that all involved persons have the
same understanding. In part, misinterpretations can be
detected by conflicts during the consolidation phase. But if
all persons came to the same wrong conclusion, only
additional manual and thus costly checks can exclude such
wrong decisions.

The principal issue is to accurately flag TPs which are
critical regarding the system state. However, the current rules
are not such conclusive that only reports are issued which are
really critical in the given context.

Further, there are messages like “Loss of precision”,
which in part cannot be avoided by a developer because they
are related to the limitations of the representation of numbers
in context of a computer, implying that

a. arithmetic operations cannot be interpreted in the
classical mathematical sense, i.e. a result may exceed
the range of the data type,

b. not all real numbers in mathematical sense can be
represented as float or double,

c. not all float or double numbers can be represented as
integers.

This weakness leads to a large number of reports which
have to be classified as FPs at the end regarding the system
state, while still a few ones may be TPs for both criteria. But
the final conclusion can only be done manually.

In fact, high numbers of reports resulting in false
positives effectively lead to FNs, because not all reports can
be manually analysed, implying to miss reported TPs. This is
a fact which has already been identified in the course of the
ESVW study, so it is not really new, but this issue occurred
again in this study.

Currently, three approaches (most probably non-
exhaustive) have been identified which support reduction of
the manual effort for such cases:

1. A tool reduces the number of reports related to the
same origin of a defect.

2. A combination of tools support to reduce
automatically the number of reports related to the
same origin of a defect by comparison.

3. A developer does apply a programming style by
which the number of reports resulting in FPs is
reduced or even 0.

- 15 -

C. Tools
1) FramaC

The analysis with Frama-C required additional effort due
to

• missing support for verification of top-level functions,
(currently only one entry point can be specified),

• missing configuration support, and
• poor reporting capabilities at generation of a large

unstructured data stream.
In order to make the Frama-C results comparable to the

other tools already applied to Application 1, an artificial
entry point was established manually, calling all top-level
functions. To build such an entry point is non-trivial and
required a lot of additional, unplanned effort, as the full
environment for the call must be provided for each of the
functions, implying declarations for every parameter of any
such function. This task had to be performed manually.

There was no hint on what is the best set of configuration
parameters regarding a certain size of an application. Starting
with the highest precision and then cutting down in half the
configuration parameters until a run terminated normally
within a reasonable time, resulted in a number of non-
terminating runs, starting with a duration of about a week,
and then approaching step-by-step a configuration which
terminated after some days. No indication on the achieved
progress was provided during or the end of an aborted run.

The huge amount of unstructured reports required special
handling. A list of reported defect types does not seem to
exist in the documentation, especially regarding critical ones,
and there is no conclusive description how the relevant
reports can be filtered.

2) yyy
For Application 2 an increased number of reports

classified as critical was generated. This was much more
than expected according to the experience with this tool in
context of Application 1, and compared to the other tools.

To reduce the manual effort the use of heuristic rules was
considered to decide on TP or FP automatically. But the
results are not considered as sufficiently reliable, currently.
More experience is required to consider such results for a
comparison with other tools.

The major origin of the occurrence of such a high
number of reports is as follows: as it is C++ code the tool
expects that all object member variables are initialized in the
constructor. But in nearly all cases of Application 2 this is
not true: initialization is done in separate functions, of which
the call is not directly visible.

The tool vendor was contacted for clarification. The
given recommendation is to apply the tool as early as
possible during development, and to modify the code by the
feedback from tool. Then the tool would report more
conclusively.

After all, the results for Application 2 / Tool 2 cannot be
considered to be representative.

3) DCRTT
DCRTT was already applied to a platform-independent

subset of Application 2, and critical defects were fixed. This
may have introduced bias regarding the found defects, but

not only for DCRTT but also for tools addressing similar
defect types.

DCRTT generated in case of Application 2 a significant
number of reports on “unreachable code” and “invariant
condition” which mainly result in an FP regarding the state
criterion or in case of “w/o context”. This is a consequence
of insufficient coverage due to either defects preventing to
reach certain locations, or specific conditions difficult to
fulfill with the stimulation methods employed by DCRTT,
such as filling queues related to global pointers.

4) PC-lint
The following defect types were issued frequently for the

full set of reports at criticality “critical” and “warning”. If
not explicitly mentioned, all reports were classified as TP
according to the tool criterion. But most of these reports can
be considered to be trivial.

• Dereference of NULL
Only a few ones, some shared with other tools.

• Loss of precision
Most of the reports result in an FP regarding the state
criterion.

• Cast to pointer of incompatible types
Really useful and nearly only reported by PC-lint (1
report by Tool www)

• Name overloading
Most of the reports result in an FP regarding the tool
and state criterion.

• Parameter type mismatch
All reports were classified as FP regarding the state
criterion.

• Unused result
Most of the reports result in an FP regarding the state
criterion.

• Unused enum-literal in switch with default
For 6 switches about 1300 reports were issued,
formally TP according to the tool criterion, but in
principal unjustified and therefore FP according to the
state criterion as the default was present and no impact
on system state or logic.

The reporting approach of PC-lint could be improved
regarding minimization of the number of reports, e.g. in case
of unused enum-literals. There are 4 levels for activation /
deactivation of reports, but the levels do not match with the
criticality levels defined in Tab. VI-3.

PC-lint allows deactivating some message types, but then
TPs could also be deactivated, e.g. regarding loss of
precision, depending on whether the operation is intended or
not, because potential TP and FP cannot be clearly separated
without taking the risk of dropping real TP.

5) www
This tool was applied to Application 2, only. Very few

reports on invalid pointers were issued. Several FP in case of
“Name overloading” were detected because it reported
overloading between a parameter or local variable with a
member of struct or class.

6) QA/C
In case of Application 1 this tool achieved the best values

for sensitivity. Please refer to [1] for details.

- 16 -

IX. CONCLUSIONS
As suggested at the end of the previous study, the

additional tools and software brought in new aspects which
enriched the knowledge on verification tools and
applications and led to a number of conclusions and
suggestions on improvements for the verification process.

The experience from both studies confirms that the
success of tool usage heavily depends on the chosen
verification tools and their integration in the development
cycle. Selection of suitable tools implies sufficient
knowledge on their efficiency w.r.t. the software to be
verified.

The diverging results from both studies regarding the
efficiency of the tools indicate that more is needed than just
to buy and apply a tool to succeed at the end.

A number of new standard defect types had to be added
to the database, the criterion for tool evaluation had to be
reconsidered and complemented. A higher degree of
automation allowed considering all the reports issued by the
tools and to derive profiles on defect types reported by the
tools, for the whole application.

A disappointing result is that the quality of the data
obtained by the new tools for the previous and the new
application is rather poor compared to that one of the ESVW
study. However, the principal issues making evaluation
difficult were identified and give guidance towards
improvement.

The spectrum of issued reports is rather broad: the
number of reports varies from 800 to 12.000 for full
Application 2, and from 40 to 500 for the chosen subset. The
value of the reports varies from trivial to of high value.

A major result is that the current evaluation criteria need
to be improved and also the verifiability of the application
has to be considered. Optimization of the whole verification
process requires consideration of the defect identification
and reporting capabilities of a tool and the degree to which
an application supports the analyses. In addition to the
evaluation criteria for a tool, also a metric should be defined
characterizing the verifiability of an application.

If many reports result in FP this may not necessarily
imply a weakness of a tool. It may also be an indicator for
potential improvements in the application. A lot of FP could
be avoided when considering the tool reports in a
constructive manner to improve the quality of the code and
not in a destructive manner only causing overhead. The more
FP are issued the higher is the probability of missing critical
reports. This should motivate to tune the code of an
application.

A tool may be sensitive to certain defects. Their
occurrence may block the tool to report more critical defects,
or may cause an explosion regarding the number of reports.
This observation confirms previous conclusions on this
issue, demanding to apply a tool as early as possible in the
coding phase to prevent by the given feedback that defects
are multiplied in the course of development.

Many reports should not necessarily be the ultimate goal
of a tool, but a minimized set of reports highlighting the
essential issues for the given context, also implying

minimized manual analysis effort. Duplication of reports and
multiple reports with different defect types on the same
origin of a defect should not be considered as of advantage
for a tool.

The comparison of results from analyses and from unit
testing confirmed the expectation that both verification types
are complementary to a high degree. This is mainly a matter
of the verification goals. While the main goal of unit testing
is to demonstrate compliance between implementation and
requirements in order to get acceptance, the main goal of
verification tools is to demonstrate that defects still are
present. Also, the results show that a high coverage figure as
a result of unit testing does not necessarily imply that tools
will not find defects any more in such lines, even if all
defects found during unit testing have been fixed.

The experience achieved in the course of this study, but
also parts of the automated process chain could be reused in
real projects, regarding

• definition of the issues of verification and the contents
of the verification plan,

• classification and priorization of reports,
• harmonization of report streams coming from different

tools, thereby reducing the amount of reports to be
manually analysed, and easing the use of more than
one tool,

• derivation of figures on distribution of defects across
the application.

ACKNOWLEDGMENTS
The results presented above are an outcome of contract

DLR-50PS1606 of the Space Administration of the German
Aerospace Center (DLR) on behalf of the German Ministry
of Economics and Energy (BMWi).

We thank our colleagues Hans-Juergen Herpel, Mladen
Kerep (Airbus Defence and Space, Friedrichshafen,
Germany) and Anton Fischer and Mario Pinto (etamax space
GmbH, Brunswik, Germany), as well as Thomas Boll
(BSSE) for their highly valuable contribution in the study.

The authors also thank the suppliers of tools 2 (yyy) and
5 (www) who provided evaluation licenses for their tools.

Also, we would like to thank Sabine Philipp-May (DLR)
for her valuable suggestions and contributions to the
discussions in the course of the project.

REFERENCES
[1] Ch.R.Prause, R.Gerlich, R.Gerlich, A.Fischer: „Early Results from

Characterizing Verification Tools Through Coding Error Candidates
Reported in Space Flight Software”, Eurospace Symposium
DASIA'16 "Data Systems in Aerospace", 10 – 12 May, 2016, Tallinn,
Estonia

[2] VectorCAST, https://www.vectorcast.com
[3] cppunit, https://de.wikipedia.org/wiki/CppUnit,

cppunit.sourceforge.net
[4] gcov, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

