Evaluation of Verification Tools Continued:
More Tools, More Software, More Aspects

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System and Software
Engineering
Immenstaad, Germany
e-mail: Ralf.Gerlich@bsse.biz, Rainer.Gerlich@bsse.biz

Jens Gerlach, Jochen Burghardt
Fraunhofer-Fokus,
Berlin, Germany

jens.gerlach@fokus.fraunhofer.de,
jochen.burghardt@fokus.fraunhofer.de

Abstract—In a previous study six software verification tools
have been applied to a representative space softwar e package.
The findings reported by each tool have been compared in
order to derive footprints regarding fault identification. In a
continuation three more tools were applied to the previously
selected application software and to another application
together with two tools previously used in order to broaden the
base of evaluation. More aspects were considered regarding
the evaluation of results: an additional evaluation criterion was
added and a comparison of reported defects with the outcome
of unit tests was performed. Due to a higher degree of
formalization and automation the manual evaluation effort
could be decreased while extending the number of considered
reports and the number of tools. The encountered evaluation
and verification issues are discussed in detail. All results
together shall provide a detailed view on the defect
identification capabilities of the considered tools w.r.t. current
software base. Altogether, the high quality of reports as
obtained in the previous study was not obtained again: in
context of a different set of tools and another (object-oriented)
language alot of trivial reportswere observed.

Keywords: verification tools, unit test, C / C++ software, false
positives, false negatives, software faults, fault identification,
fault coverage, fault report evaluation, software verification,
verification efficiency

l. INTRODUCTION

In [1] results of a first step towards evaluation of
verification tools were presented and discussed. In this paper
we provide results of a continuation of the tool evaluation
activities.

The conclusions a the end of the previous study
suggested broadening the base of the evduation by
considering more tools and more application software.
Therefore another representative software package was
selected and three further tools were added to the set: Frama-
C, PC-lint and a commercial third one, for the disclosure of
which no permission was given yet. Due to the results of the
earlier activity regarding tools' capabilities and applicability
to the space domain, three tools from that earlier evaluation
were not considered to be of further interest and were not
part of the present evaluation.

Sergio Montenegro, Frank Flederer
Julius-Maximilians-University, Informatik VI
Wouerzburg, Germany

sergio.montenegro@uni-wuerzburg.de,
frank.flederer@uni-wuerzburg.de

Christian R. Prause

Deutsches Zentrum fur Luft- und Raumfahrt eV. (DLR)
Bonn, Germany

e-mail: Christian.Prause@dir.de

The recently obtained results are quite different from the
previous ones. While the amount of reports and their
classification as true and fase positives was rather
straightforward in the first study, the number of reports was
significantly higher and their classification was rather
chalenging. Not only the amount increased as such, but a
high number of trivia reports was observed not contributing
any value, but compromising heavily the recognition of true
positivesin the large set of reports.

However, this observation shall not be considered as a
counter argument regarding the benefit of analysis tools. It
should be understood that a careful selection of tools is
required in order to maximize defect identification and
minimize the related effort.

The deeper analysis of the defect identification and
reporting mechanisms led to the conclusion, that just to buy
and apply atool at the end of development is not sufficient.
In fact, a developer aso can contribute a lot to reduce the
amount of reports on suspicious code, implying fault
potential, but not causing arisk in the current context.

A major point is the continuous use of such atool over
the development period, which is not a new message, but it
has been confirmed again.

For comparison of results of analysis with unit testing the
tool reports were correlated with the results achieved by unit
testing to investigate how complementary or overlapping
both aspects of software verification are.

This paper is structured in the following manner:

In Ch. Il principal terms are explained required to
understand the evaluation process and the results. In Ch. 11
the evaluation context is described, as well as the software
and the tools used. The evauation process is explained in
Ch. VI. Veification issues are discussed in Ch. V. The
evaluation process is described in Ch. VI. The evaluation
results are presented in Ch. VII. Lessons learned are
provided in Ch. VIII, and in Ch. IX conclusions are drawn.

II. DEFINITION OF TERMS

The terms relevant for understanding the evaluation
process are defined in this chapter.

Paper presented at DASIA*2017, 30.05.2017
Eurospace Symposium DASIA'2017 "Data Systems in Aerospace’, 30 May — 1 June, 2017, Gothenburg, Sweden

-1-

A. Tool Report

In the context of this paper a “tool report” is a message
issued by atool indicating that one of its verification rulesis
violated.

B. Defect, Fault, Error, Failure

A defect commonly refers to troubles with a software
product, with its external behavior or its interna features
(e.g., its maintainability). This includes consideration of the
risk of faults by potential changes of the context, which
could invalidate previous verification results. For details
pleaserefer to [1].

C. Defect Types

Defects can be grouped into “defect types’, so that a
defect is considered as an instance of a defect type. Many
defects of the same defect type may be reported.

Defects of the same type may be called differently by
different tools. In consequence, for matter of comparison, the
terms used for a defect type in atool report must be mapped
onto a standard defect type. This mapping may be automated
by mapping tables.

D. Criticality of Defect Types

Four criticality classes were introduced for the defect
types: critical, warning, uncritical and ignore.

“critical” means that the defect always manifests itself as
an error, “warning” that it may manifest case-by-case, and
“uncritical” that it is a software engineering issue only, not
manifesting during execution and impacting runtime
behaviour. Finaly, “ignore” collects al other reports which
are not considered as useful at al, e.g. providing additional
explanation to another report, or highlighting a trivia case
which would not be subject of corrective maintenance at al.

E. Classification of Tool Reports

In general, a report is a message issued by a tool on a
supposed defect found in the software according to its defect
identification approach, usualy based on violation of
verification rules.

A tool may fail to report a defect or may report a defect
where no defect is present. There are 4 distinct cases
depending on whether a defect exists or not and whether a
tool reports a defect or not (Fig.I1-1).

Code

Defect present Defect NOT present

Defect Reported true positive, TP |false positive, FP

Result
= Defect NOT reported |false negative, FN |true negative, TN

Fig.ll-1: Classification of Tool Reports

The characteristics of a tool regarding its capabilities to
correctly report defects shall be described by two figures:
Sensitivity: it isdefined asthe quotient TP/ (TP+FN).
Precision itisdefined asthe quotient TP/ (TP+FP)
Sensitivity represents the portion of confirmed defects
(TP) in relation to the overal number of defects. As the
overdl number of defects remains unknown, it is
approximated by the set of confirmed defects found by all

tools or by anaysis in the context of manua assessment of
the reports.

Precision represents the portion of reported defects that
are actua defects compared to the number of issued reports.

F. Complementarity of Tools and Tool Combinations

A result of previous evaluation is that no tool can cover
all defect types. tools may be complementary or overlapping.
To maximize defect identification in the context of
verification in a project, especidly for identification of the
tools being made mandatory in the Software Verification
Plan (SVP), it is essentid to know which combination of
tools increases the sensitivity and how much.

The more tools are complementary, the higher is the
portion of unique contributions by tools.

G. Report Classification

For classification of tool reports as TP or FP two main
criteriawere applied with two sub-criteriaeach (Fig. 11-2):
e Criterion 1: tool criterion
e Criterion 2: state criterion
e Sub-Criterion 1: without context
e Sub-Criterion2: with context

The “tool criterion” was applied in the previous study,
and there it was the only one. The classification is purely
performed by answering the question “Is the tool right or
not”.

Now, in addition the “state criterion” was introduced to
consider whether an undesired state could result from the
reported defect. If so, the report is classified as TP, otherwise
asFP.

Cases may exist where the toal is right, but the resulting
state is ill valid. A typical exampleis “while (1)”. In atask
body, this construct is frequently used and the non-
termination of theloop isintended.

Classification Applied to
Category Applied Condition Application

tool Is the tool message formally correct?
validity
state Can an undesired state be reached? 2
with context Input domain may be constrained by callers 12
context
without context Maximum input domain can be used 12

Fig. 11-2: Evaluation Criteria

Similarly, release of a resource may not be intended,
because the application will never terminate, so that the state
resulting from the endless loop or the not intended rel ease of
the resource will either not be of relevance or not matter at
all.

These examples show that the state criterion is not an
objective criterion: the decision may depend on a supposed
intention or consideration of an extended evaluator-defined
scope not seen by a tool. Whether an undesired state will
occur, may aso depend on the platform and the agorithm
implemented in the code.

Therefore it does not seem to be a suitable criterion to
compare thetools.

The decision on FP or TP may aso depend on the
context as explained in the following section.

H. Context and Platform Dependency

The congtraints imposed on the input domain of a
function, as spawned by the type ranges of its parameters
together with conditions or constraints imposed by its call-
context, is called “the context” of a function call. In case of
the sub-criterion “without context” the full input domain and
no other constraints are considered.

Different results may be derived depending on whether
considering the context is activated or not. The context may
congrain the input domain, so that a defect cannot be
activated or cannot manifest as error or failure. A report may
be considered as TP in the context of the full input domain,
but as FP in the context of an application imposing a limited
input domain.

The number of considerations can be minimized for
context-sensitive defect types due to the following
conclusions:

* In case of dead code and invariant conditionsa TP for
the case “without context” impliesa TP for “with
context”.

» Viceversg, for the other context-sensitive defect types
aTPfor “with context” impliesa TP for “without
context”.

The evauation result aso may be affected by the
properties of the platform (compiler, linker, processor, other
hardware), and the contents of the data when the suspicious
code is executed. So it may happen that an overflow in a
byte-operation is masked by the processor because it always
applies 32bit-operations, or a linker silently maps data with
same, but from different compilation units onto each other.

I11. CHARACTERIZATION OF THE EVALUATION CONTEXT

A. Overview

Three out of the six tools used in the previous ESVW
study [1] were no longer included in the activity (they were
called “1/xxx”, “4/zzz" and “6/gcc” in that study). Instead,
three other tools were included in the current FSVW study:
FramaC, PC-lint and a tool called www for the time being,
yielding five tools in total to be considered. Tab. 111-1 gives
an overview on the use of tools in both studies.
Unfortunately, not all names can be disclosed at this point.
Currently, we have not received a confirmation from the
vendor of Tool 5/ www in the current set to disclose its
name.

Further, another application software package (written in
C++) was selected. In order to achieve full coverage for the
current set of tools regarding the two software packages, al
current tools were applied to the Package 2, except for
FramaC, which currently does not support C++, and the new
ones also were applied to Package 1, yielding the matrix
shownin Tab. I11-2.

As dready done in [1] a subset of functions had to be
chosen to limit the manual effort for evaluation of the tool

reports.

For Application 1 26 functions were selected by fault
distribution (the ones with highest number of defects), 34
randomly. In case of Application 2 a first evauation of
defect distribution vs. functions yielded no significant
accumulation of defects for certain functions like it was
observed for Application 1. Therefore it was decided to take
the cyclomatic complexity (CC) for selection. CC varied
from 1 to 16. Five groups were built according to CC and 60
functions were selected randomly from these groups.

Standard Defect Types

warning uncritical ignore

Tool-
specific
Defect
Types

Study
total critical
ESVW 20 11 8 1

FSvVW 40 16 17 6 1 371

Number of Observed Tool-Specific Defect Types

Frama-C yyy DCRTT PC-lint www
28 43 42 185 73
Tab. I11-1: Overview on Tools and Studies
Tool
“ 1 2 3 4 5 6
11C xxx Frama-C yyy DCRTT zzz PC-lint QAIC - gce

20+ [N vy ocrrT [pcint [v [

Tab. 111-2: Overview on Tools and Software Packages
B. The Application Software

Tab. 111-3 shows the characteristics of both software
packages.
Property Application 1 Application 2
Size / KLOC, total h+c 42 20
Functions, total 610 611
c-Files, total 49 55
with functions 39
without functions 49
h-files 96 104
Functions, manually evaluated 60 60

Tab. 111-3: Characterization of the Software Packages

C. TheTools

The spectrum of analysis approaches as listed in Tab.
I11-4 applied by the tools is quite broad, and defect
identification by the different tools is based on a number of
independent methods and implementations (Tab. 111-5).

Analysis Approaches

abstract interpretation

dataflow

symbolic execution

analysis based on dedicated checking and tracking

static

dynamic auto-stimulation / automated testing

Tab. 111-4: Spectrum of Analysis Approaches

Only those tools are listed there which are still in the set
of Study 2/ FSVW.

Tools 1, 2, 4 and 5 are static andysers, Tool 3 applies
dynamic anaysis (automated built of the test and stimulation
environment).

Abstract Interpretation is used to approximate the
semantics of a computer program in order to soundly prove
certain characteristics of the program, e.g. the absence of
certain defect types.

Analysis Approach _Appl. |
XXX 1

1

Frama-C static abstract interpretation 2
2 yyy 1,2
3 DCRTT dynamic auto-stimulation 1,2

27z symbolic execution, dataflow analysis 1
4 .])

PCint . Analysis bgsed on dedicated checking and 12

static value tracking

QA/C _ .) 1
& Symbolic execution, dataflow analysis

WWw 2
6 gcc compiler syntax, semantic, type checking 1

Tab. 111-5: Characteristics of Tools

For Automated Testing / auto-stimulation the software is
automatically stimulated with inputs and its behaviour is
monitored, e.g. by instrumentation. As not al possible
combinations of inputs can be provided, the method may
miss present defects, leading to FNs. However, any input
that leads to an error is a witness for the presence of the
respective fault in the code. FPsare only possible if
representativeness of the test platform is not ensured.

Symbolic Execution is a method used for analysis where
the software to be analysed is executed symbolicaly: Instead
of concrete values, symbolic variables are used. Smilar to
actual execution, only a specific path through the software is
executed. In order to prove absence of a defect a a given
point in the code, all paths by which this point is reachable
have to be enumerated, similar to testing. As a consequence,
if complete enumeration is not possible, the method may
miss present defects, leading to FNs.

D. Tool Configuration

Every tool provides its own and specific set of
configuration options. Of course, the chosen set of such
options impacts the i ssued reports.

The applied configuration options are briefly described in
the following sub-sections.

1) Tool 1. FramaC

The vaue-analysis-plugin of FramaC (version Silicon)
was subject of evaluation.

In case of FramaC several attempts were required to find
asuitable configuration.

There seems to be no knowledge on trade-offs between
execution time and accuracy of results. Therefore the
configuration parameters devel, plevel and ulevel were
reduced in three steps from the highest value down to avalue
where the tool terminated its run within three days.

2) Tool 2: yyy

The same optimized configuration as in the previous
study (especially regarding a 32-bit application) was applied
to the C++ application with the following additional
decisions.

Reports on non-initialized class members were turned of f
asthey lead to errors which block further code analysis.

Thetool failed initialy and the software was provided to
the tool supplier. According to the feedback one function
was stubbed as work-around.

3) Tool 3: DCRTT

The same optimized configuration as in the previous
study was applied to the C++ application. However, three
runs were executed: the first one under consideration of
congtraints on function parameters and globa variables
regarding data ranges and size of arrays, collected
automatically, and with cal of suitable initidization
functions, while for the second and third run such constraints
were removed stepwise.

The reason for execution of the additiona runs was that
the constraints were aso present for the “without context”-
case, and may hide reports, while intentionaly the
constraints were inherently considered to reduce the number
of FP-reportsfor the “with context” -case.

4) Tool 4: PC-lint

The standard configuration of PC-lint was applied. Only
the options for the maximum width for integer and float were
set to 32-hit (-si4 -sp4), as the application was written for a
32-bit processor.

Although PC-lint offers the opportunity to switch off
report types on a case-by-case basis, this capability was not
applied. Instead in the course of the mapping of tool report
types onto standard defect types, report types which were
considered as irrelevant were mapped onto an additional type
“DefectTypelgnored” in order to get rid of such reports in
the course of manual evaluation..

5) Tool 5: www
The standard configuration for this tool was used, except
for raising the dataflow analysislevel to the maximum.

IV. TooLSVS. UNIT TESTING

The intention of a comparison between results of tool
analysis and unit testing should clarify what the benefit of
each of the approaches is, and whether they are
complementary or overlapping, and if so to which degree.

A. Overview on the Approach
For each (executable) line of the source code a marker
was added indicating
» whether the line was covered by a unit test at al, and
in detail,
* by which unit test out of the whole set,
» whether the lineincludes a“normal” statement /
expression or a condition, and
« if available, information was added whether an
exception or adefect was detected during aunit test.

Cross-module coverage was considered, i.e. if a unit test
did not only generate coverage in the function-under-test, but
inthe cal tree aswell.

The stream of lines of an application, either for the whole
set of functions, or the selected subset, formed the basis for
correlating the tool reports with coverage results from unit
tests. This way, contributions from unit tests and analysis
tools were compared.

If atool reports a defect for a covered line, obviously the
defect was not detected during the test. Vice versa, if adefect
was detected during unit testing, but not by anaysis, then a
tool is not sensitive for this defect.

In conseguence, the more either a tool reports or a test
highlights a defect, but both do not for the same defect and
the same line, the higher the complementarity of analyses
and unit testing.

As (additional) contribution by tools the following 2
cases are considered:

» If aline was covered and a TP was reported for this
line, then the defect can be assumed not to be
detectable by a unit test.

 [f aline was not covered and a TP was reported for this
line, then the anaysis brings an added vaue by
reporting a defect for a location, not addressed during
unit testing.

Vice versa, as additional contribution from a unit test with
respect to toolsthe following case is considered:

 |If aline was covered and a defect or an exception was
detected during a unit test, but no tool issued a report
for thisline, then thisis a valuable contribution by unit
testing.

Further, coverage as such can be compared:

e Is missing coverage confirmed by a “dead code”

report or not?

e Does atool report “dead code’, while coverage was
achieved?

Different scenarios may be applied for these
considerations taking TP from tool analyses, then possibly
leading to different results: was the TP a matter of “with
context” analysis, from “without context” analysis, or both,
and which context was considered during unit testing.

B. Application 1

The unit tests were aready performed for 362 of 610
functions, and detected defects were removed successively.
For 248 functions no unit tests were executed as these
functions were auto-coded, and test of a few of such
functions was considered as sufficient. However, by the tool
reports principal issues in the code generator were detected,
mainly related to fault handling, suggesting that more or
even al auto-coded functions should have been subject of
unit testing.

As the idea of correlating unit tests and analysis reports
came up after completion of unit testing, the information
about detected defects was not recorded.

Therefore in case of a covered line, either a defect
already detected during a unit test was not fixed, not detected
or not detectable.

The tool used for the unit tests was VectorCAST [2]. It
was aso used for retrieval of the unit test information in a
format suitable for the merge with report information

C. Application 2

The unit tests were established as part of the study, but
due to budget limitations only for the subset of (60) selected
functions. The information on defects and exceptions was
recorded, but only a few defects were detected, actually. In
all cases at |east one of the tools reported the issue, too.

The tools used for unit testing are cppunit [3] and gcov

[4].
V. VERIFICATION |SSUES

The results of the previous activities were discussed with
tool suppliers and software developers. The contents of such
discussions are briefly listed below, followed by conclusions
on the evaluation criteria. The discussion highlights principal
issues of report classification, aso driven by the high
number of trivial reports observed in the recent study.

The issues related to tool vendors are mainly a matter of
FNs, while the discussion with devel opers focus on FPs.

In addition, pro's and con's regarding unit testing,
verified-by-use and anayses are discussed in order to get a
clearer picture about which verification approach may be
appropriate regarding required dependability and implied
costs.

A. About False Negatives

The generad point of discussion is under which
condition(s) amissing report may lead to an FN for atool.

In the previous study, the criterion 1 / tool criterion was
applied to investigate which defects can be reliably found by
atool, focusing on whether areport isjustified or not.

If atool is right, the lack of a report from another tool
must be considered a FN.

Tool suppliers argued that the FN originated in
conditions imposed by the tool that would preclude the
respective fault to be activated. While these conditions were
not present in the origina code, the vendors pointed to the
documentation of such assumptions justifying the lack of a
report. If such documentation was missing, this was an issue
of the documentation, but not of the tooal, the vendor argued,
and as such should not be considered an actual FN.

Our position is that if a tool does not report a fault
because, dthough the error can be activated under the
circumstances imposed by the code itself the tool imposes
additional congtraints, then an actual fault is not being
reported due to aspects solely to be blamed on the tool. As
such, the lack of areport is to be considered a FN. Whether
the reason for that FN can be explaned or even is
documented or not isirrelevant.

This discrepancy in opinions led to the vendor blocking
publication of the tool name.

However, if the tool can be configured not to impose the
restriction, then care is to be taken before marking down the
lack of a report as a FN, because a user can modify the
configuration so that the fault could be detected.

Still, if the additional assumption normally blocking
detection of the fault is enabled by default and must be
explicitly disabled by the user, this needs to be considered in
a critica manner. The question arises whether a user would
be sufficiently aware of such a default assumption. The
documentation for such tools is often aready very extensive
so that realistically it is not useful to assume that a user will
understand and keep in mind al the consequences such
assumptions would have.

It may be essential for a tool supplier to distinguish
whether the source of the FN is related to the environment
built by the tool, constraining detection, or the agorithm
applied for detection, especidly when the tool supplier
claims that the algorithm can ensure absence of FN. For the
user, thereason isirrelevant.

Also, a case was observed in the recent study in which a
report was not issued athough it ought to be according to
documentation. Obviously, there is discrepancy between
documentation and implementation.

To summarize: any fault not being reported must be
considered a FN, independent of the reason for the lack of a
report.

B. About False Positives

The man concerns about FPs are coming from
developers, claming that the reported defects would not
cause a failure of the software — even if the tool is formally
correct.

Cases were observed — not in the reference studies, but
for other applications, where the implemented logic was
completely wrong, but incidentaly for the few parameter
sets given the results was correct.

The big challenge is that the number of reports related to
suspicious code is — as a matter of experience — much higher
than the ones related to clear TP. This implies a high
overhead for the anaysis, which would not occur if
suspicious code were not present or was even avoided, eg.,
by using the tools right from the beginning and considering
their feedback.

However, it has to be admitted that aso a tool may be
originator of a significant number of trivial reports (see the
discussion in Sect. C below and in Ch. VII1.B), which result
in TP according to the tool criterion, but could be considered
unjustified. Then proper measures have to be undertaken to
avoid an overhead.

In part, such reports may be put in a separate category
“ignore”’. But this is not possible in every case. “Loss of
precision” turns out as uncritical in most cases. However,
amongst such a set one report may evaluate to a critica TP
(the reader is reminded of the incident during Ariane Flight
501, the maiden flight of Ariane V — coincidentally the
trigger for the creation of some notorious static verification
tools). If the whole set would be ignored, then the critica
report would be lost. Thisis not acceptable. Therefore other
measures need to be considered.

The comments of developers to TP according to the tool
criterion were mixed, ranging from immediate acceptance
(considering it as a violation of best practices) to reection
because the probability of the system state being

compromised was assumed to be sufficiently low or even
zero, although not being compliant with best practices.
However, the essentia point is: usualy it is not known in
advance whether the result does not lead to unwanted states,
while a negative impact is possible in general. A vaid
conclusion can only be drawn after — manua — analysis.
Therefore the principal options are;
 toignore/drop areport and take the potential risk,
* todotheanalysis and decide after whether to fix or
not, or
» todotheanaysisandto fix theissue, and/or to try to
avoid similar issuesin future.

C. Systenv Context-immannent False Positives

In some cases it is reasonable that a tool frequently
produces a FP if it does not have — sufficient — information
on the context. In many cases it is even impossible to
provide this information on language level. Amongst such
cases are: resource leaks and loss of precision.

However, a tool may support provison of meta
information to suppress such FP-reports.

D. Verified-By-Use vs. Verification by Analysis

In the discussion with developers frequently the issue of
a high number of FPs— in the sense of the state criterion —is
addressed, doubting the added value coming from anaysis
tools like the ones under consideration, and claiming that
most of the reports issued by such tools would actually result
in FPs.

In the discussion it is important to understand that the
state criterion does not deal with probabilities: If it is
possible to enter an undesired state as per the state criterion,
the report has to be considered a TP, independently of the
probability of occurrence of such an event. For the study, the
reasons for this are pragmatic: Neither is the probability
distribution of the inputs known nor was a limit probability
specified below which events can be considered seldom
enough not to be considered.

However, the same problems occur in practice as well:
Typicaly, at least one of these items of information is not
formally available.

Still, low probability of occurrence can only be a valid
defence against a fault report if proof can be provided that
the probability is small enough.

According to the experience obtained so far — not only in
the course of the ESVW and FSVW studies, but aso in
context of analysis activities in other projects — the essential
point raising such discussion is that the verification goals are
not precisely defined, if at all.

Then — as a consequence — the use of analysis toolsis not
harmonized with the development process, leading to
overhead and missing acceptance of the tool reports.

When a decision is made towards use of anaysis toals,
an integrated approach needs to be defined prior to any tool
usage, addressing

1. definition of criteriafor TPs,

2. definition of the fault removal process,

3. selection of suited tools considering required

criticality criteria,

4. continuous tool usage in the development process, VI. THEEVALUATION PROCESS

5. definition of report processing to reduce the manual A The Overall Process

effort, possibly including pre-processing and filtering) . . .
Due to the experience obtained in the previous study a

of raw reports. LT) o -
All these steps are a pre-condition for successful tool smphﬂ?q edand slightly modified process flow (Fig. VI-1)
was applied.

usage. Dropping any of them suggests that either
 useof tool analysisimplies an overkill regarding the

| Source Code
real needs,

.))
* (possibly) unacceptablerisks are tolerated, or ‘ Tool 1 ‘ ‘ Tool 2 ‘ ‘ Tool 3 ‘ ‘ Tool 4 ‘ ‘ Tool 5 ‘
« efficiency of verification suffers. - 7 ‘ 9

T [| I [I [
The more of above process steps are dropped, the closer L o o | j 7] .
. PO e manual / semi-
the envisaged verification process comes to verified-by-use, ‘ Report J ‘ Report J ‘ Report J ‘ Report J ‘ Report J automatic step
while the costs of verification remain much higher as for | | ! 1 .
Verified-by-use. Assessmem}s Assessment | Assessment - | Assessment [| Assessment a’”ﬂgzz;:i;z;
To support the clarification process regarding what is the f T T
proper approach, the approaches are briefly characterized. | | Reconfiguration Consolidated Report automatic step
The provided arguments may be used as a checklist. 2 pefeei rfles
As unit testing is later compared to analysis it is also put
into the list. Reconsideration Bavias Final List of
* unit testing Conflicts Findings
0 demonstration of compliance with requirements manual step

focusing on functional aspects

o limited subset of input domain, coverage-driven

o verification goal isto pass the (possibly
requirements-based) tests

0 currently requires mgjor effort at limited
predictability on future defect rates

« verified-by-use

0 demonstration that software does properly work for
agiven, but probably unclear scenariofocusing on
functional aspects

o impliesthat software was sufficiently exposed to
such ascenario

0 possibly enhanced compared to UT due to extended
set of conditions

0 lean approach at limited predictability on future
defect rates

* static and dynamic anaysis

0 aming to demonstrate presence or absence of faults

0 considerslarge set of conditions

0 appliesincreased capability to detect defects, but
till not perfect

0 provides capability to look beyond scenarios as used
for UT and verified-by-use

0 may imply overhead if improperly applied.

To summarize:

If you want to know that the implementation is correct,
i.e. that you can expect always correct results under
arbitrary conditions, then do apply a rigorous verification
approach like static and dynamic analyses do support.

If you just want to know that you will get correct results
under current conditions, although only partially or fully
unknown, then unit testing or verified-by-use should be
sufficient.

Fig. VI-1: Logic Flow of the Evaluation Process

Now, in afirst step every tool is applied to the software
and the reports are extracted and immediately classified as
either true or fase positive, not trying to correlate them with
reports from other tools, thereby allowing parallel evaluation
of tool reports. Then in a second step all reports are merged
into a single stream, correlating reports from different tools
about the same alleged defect, automatically, while this step
was previously done manually.

After the merge — automatically — FNs are identified for
tools not reporting a TP in contrast to other tools.

Then evauation scripts are applied on the consolidated
list to derive statistical figures regarding similarities or
differences.

The tool and state criteria were applied for all new
analyses, i.e. to al anayses related to Application 2, and all
analyses performed with FramaC and PC-lint on Application
1
B. Sandard Defect Types

Due to use of another programming language — C++ for Application 2
instead of Cfor Application 1, adifferent programming style, and two
additional tools, more standard defect types (onto which all the specific
messages from all the tools are mapped) were identified: 40 (plusan ignore
category) instead of 20 before.

Tab. VI-1and Tab. VI-2 show the previous and current
distribution of defect types vs. criticality and the number
tool-specific defect types. Tab. VI-3 provides the list of
current standard defect types together with the criticality.
Yellow rows indicate new defect types. The total number of
considered tool messages is 371, i.e. about 74 messages per
tool on the average and nearly 2 specific defect types per tool
and standard defect type.

Tool-
specific

Standard Defect Types

Defect
total critical warning uncritical ignore Types
ESVW 20 11 8 1
FSVW 40 16 17 6 1 371

Number of Observed Tool-Specific Defect Types
Frama-C yyy DCRTT PC-lint
28 43 42 185 73

Www

Tab. VI-1: Identified Defect Typesvs. Criticality, Summary

Observed Tool Defect Types (Both Applications)
Criticality -
Frama-C yyy DCRTT PC-lint WWwW

critical 18 34 25 42 32
warning 0 6 13 23 24
uncritical 0 0 0 8 2
ignore 11 3 4 112 15
Total 29 43 42 185 73
Observed Standard Defect Types (Both Applications)
Criticality
Frama-C yyy DCRTT PC-lint WWw

critical 8 9 S5 9 9
warning 0 2 3 11 12
uncritical 0 0 0 4 4
ignore 1 1 0 1 1
Total 9 12 8 25 26

Tab. VI-2: Identified Defect Types vs. Criticality, Detailed

Tab. VI-2 gives detailed figures on the distribution of
tool defect types and standard defect types vs. criticality for
each tool.

C. Automation

The results of the previous study suggested that a higher
degree of automation is urgently needed for processing of the
large amount of tool reports, either to complement missing
information, to harmonize reports from different evaluators
or to merge and compare contents of reports.

For example, in part, function names are provided by
tools, to the other part file names and line numbers. The
missing information can be added automatically, and all
reports can be put on the same contents of information.

In case of C++, the full signature of a function may be
provided. Other tools may provide mangled names for
unigue identification of C++ functions. Such differences can
be harmonized automatically, complementing the missing
part.
For some defect types the result is identical for with and
without context cases, for the tool and state criterion alike, so
that the judtification can be shared between both cases,
automatically, either filling in the fields or — if aready filled
in — checking manually inserted decisions for consistency.
More such rules have been identified and applied.

Further, the determination whether afunction is called in
context of the application or not was previoudy done
manually. Knowledge is required about whether context has

Defect Type Criticality
Array Index Out-of-Bounds critical
Dangling Pointer critical
Dereference of Invalid Pointer critical
Dereference of NULL-Pointer critical
File Access Error critical
Invalid function pointer critical
Invalid Return Statement critical
Loss of Precision critical
Macro Use with Unintended Conseguences critical
Non-terminating Loop critical
Passing Invalid Argument to Standard Library Routine critical
(Possible) Recursion critical
Resource Leak critical
Undefined Result critical
Uninitialized Variable critical
Unintended Use of Implicit Member Function critical
Arithmetic Operation on NULL Pointer warning
Arithmetic Overflow warning
Cast to pointer of incompatible types warning
Comparison of floating-point values warning
Conflicting Declarations warning
Incomplete List of Cases for enum-Type w/o default warning
Intended Change of Invariant Data warning
Invariant Condition warning
Invariant Expression warning
Loss of Update warning
Name overloading warning
Parameter Type Mismatch in Function Call warning
Timeout during Execution warning
Unnecessary Loop Construct warning
Unnecessary Operation warning
Unreachable Code warning
Unused Result warning
Change of Data expected, but missing uncritical
Incomplete List of Cases for enum-Type with default uncritical
Inconsistent Overloading uncritical
Multiple return paths uncritical
Security Issue uncritical
Unintended Change of Data uncritical
Ignore ignore,
don't care

Tab. VI-3: List of Standard Defect Types
to be considered or not. Due to available parsing information
the provision of thisinformation also could be automated.

And there are still more steps which were automated.

The implemented functionality on automation should not
only be useful for tool evaluation, but should aso be
beneficia for (rea) projects needing support for anaysis of
tool reports.

The challenges are the same for tool evaluation and tool
usage: identification of the critical issues from a probably
large stream of reports.

The formalization of a number of steps of the evaluation
process — a pre-condition for automation — also alowsto get
aclearer view on the tool reports while limiting and reducing
the amount of manual effort. This work still can and shall be
extended in future. It is a pre-condition for detailed
evaluation of larger quantities of code and tools.

VIl. THEEVALUATION RESULTS

Remark: The results presented here strongly depend on
the application. Defects which do not occur in the chosen
applications will not be considered. Therefore the results
may not generalize to any other context.

In contrast to the previous paper no figures on sensitivity
and precision are provided here, for reasons aready

mentioned. Instead, information is provided which
sufficiently characterize the tools.

The tables and graphics provide a lot of information, so
that a reader can get an idea on a tool’s capabilities. A
detailed discussion of all aspects related to this information
would go far beyond of the scope of this paper. Therefore the
most interesting and important aspects are discussed, only.

A. Overview on Reported Defects

Tab. VII-1 provides an overview on the number of
reports per tool.

m Tool Reports Application 1

Frama-C yyy DCRTT PC-lint QAIC
all, raw 10124
all 1913 948 1480 5245 4976
selected 107 165 187 43 232
ignored, all 39 0 5 3100 2870
ignored, selected 0 0 0 0 0
critical, all 1874 616 942 146 393
critical, selected 107 137 102 6 93

Frama-C yyy DCRIN PC-lint www

1 2|3

all, raw
all 2132 365 366 370 11999 798
selected 508 73 78 80 107 39
ignored, all 182 0 0 0 8614 510
ignored, selected 41 0 0 0 0 0
critical, all 1155 193 737 141
critical, selected 376 14 55 10

Tab. VII-1: Overview on Tool Reportsfor both Applications
The rows of the tables show

o dl,raw:

the initial number as issued by a tool, without having
applied any steps for reduction

o dl:

the number after having applied tool-specific measures
for reduction

» selected:

the number relevant for the selected 60 functions
derived from the all-figures,

* ignored:

the number of ignored reports
In case of Application 2 and DCRTT three runs were
executed to see the impact on different configurations:

1. without injection of NULL-pointers, but with call of

suitableinitialization functions,

2. with injection of NULL-pointers, but with cal of

suitable initialization functions,

3. withinjection of NULL-pointers and without call of

suitable initialization functions.

The impact on the number of reports as such is not so
high. However, there are differences in the reports. E.g.
when an index-out-of-bounds was reported inrun 1, inrun2
a NULL-pointer dereference was reported, excluding the
report on index-out-of-bounds, yielding till one report, only.

In case of Application 1 the raw figure of FramaC was
reduced by mapping equivalent messages from different call-
paths onto one entry, using file, line and report text for

compressing. However, different independent reports related
to the same triple will be mapped on the same entry, too, e.g.
in case the same message was issued for the left and right
part of an expression.

For the selected case this impact can be compared and
yields about 6 missed entries (~6% of the total number).

In case of Application 2 the raw number of PC-lint was
reduced by dropping al reports which are classified as
negligible by the mapping tables established for every tool.

B. Profiles

Tab. VII-2 shows the distribution of the reports (not of
the TPs) over the criticality classes for both applications and
thefull set and the subset of 60 functions.

A reader should bear in mind that the figures show the
percentage regarding the set of standard defect types atool is
supporting (as shown in Tab. VI-2). E.g. adl supported
standard defect types of FramaC are either critica (8) or to
be ignored (1). Therefore the percentage shown for FramaC
amountsto ~89% for critica defect types.

These figures just give an impression on the distribution
of supported defect types per tool over criticality w.r.t. the
overall number they are supporting. They should not be used
for direct comparison of tools.

Tab. VII-3 and Tab. VII-4 show the profiles regarding
the standard defect types for both applications and the full set
and the subset. For Application 1 more critical defect types
are covered than for Application 2. Vice versa, it is for
criticality “warning”.

The figures also show that the spectrum of the subset is
not representative for the full set. This result led to a
reconsideration of the selection process based on functions
performed prior to report analysis. Due to automation of the
process it shall be possible in future to select samples by
defect types according to the overal profile.

Tab. VII-5 and Tab. VII-6 compare the distribution of
TPs between the tool and the state criterion. It is obvious that
some defect types remain at nearly the same amount, while
others disappear for the state criterion.

Please note that the decisions derived for the state
criterion were based on different interpretations of the state
criterion by the evaluators as discussed below.

Tab. VII-7 gives average figures on the four different
transitions for both applications. As an FP for the tool
criterion implies an FP for the state criterion, a transition
FP/tool=TP/state is not possible.

The most interesting transition from a developer’s point
of view — worrying about unjustified tool reports — is
TP/tool=FP/state, which is highlighted in yellow colour.
While the percentage for TP/tool=FP/state is nearly the
same for both applications, it is quite different for the two
remaining transitions.

The reason for the big differences needs further
investigation. As already mentioned, this may be a matter of
individual interpretation, but it may aso depend on the
application. Tab. VII-8 gives an impression on the broad
range of individua decisions, ranging from about 13% to
80% for TP/tool=FP/state.

M critical

o warning
= uncritical
MWignored

Criticality Profile, Full Set, Application 2

Criticality Profile, Full Set, Application 1

Wy % DCRTT % PC-lint % wanw %

Criticality Profile, Subset, Application 2

Frama-C %

o
Wy T
® £ &8 w
u T OC%
5 c g o
2 8 £ ¢
g oz 5
| BN B I]
o e o o o
2 e e a a
o o o o o
@ o % &
"
oL T
T E 8 w
u E T o5
= £ 5 o
£ 85 £ ¢
g = 5 ¥
[I B I |

20 Q0 000
€988 8g8
00 Q0 000
N QO QW T ™
L]

C-lint 28 QA/C%

P

DCRTT %%

Frama-C %% YYY %
Criticality Profile, Subset, Application 1

120,00
100,00

80,00
50,00
40,00
20,00

0,00

M critical

W warning
= uncritical
MWignored

[Lala

80,00
50,00
40,00
20,00

0,00

uncritical

www %6

syed uingar ajdigny

syed uimal ajdiynia|

Buipeojiaag

JoEn

PC-lint %

ege(Jo aduey)

DCRTT 2%

IS ay pasnun
apo) aqepeaiun
uoneladg Alessadauun

" don Alessaauupn

“duranp Jnoaw

YYy %

Frama-C 2&

adA| Jajaueley
Suipeojiano awepy
aepdn josso]
uoiss 3.3 JURLEAL|
UOIIpUOT JUBLEAU|
jo aduel) papuau
“jo 3517 ayajduwoou|
suopeepaq Supijuo
Buneol} jo uosjeduio)
* Jo Jaquiod o0 e
MOjjIaAQ SRapLY

 uopEad0 NaWY

Hujpeojiang

{40 3517 aa|duioay|

"RIE(Jo aUey)
Jyrsay pasnun
a0y B|geypE IUf
uopelado dessaauun
don] diessaauun

“funinp jnoawi]

vadh 1ajaue Ry

Suipeoyiano awepy

aepdn Josso]

uoiss aelxg JUeLEAL|
H 0[Py JUELEAU|

"o aduey) papua)
40 517 39| duioau
suoleIR[aQ BupIjue)

" -Buneojy jo uosedwoy

“jo saujod o} 50

" mojysang Ay

"uogRIadg IR

Tab. VII-2: Criticality Profiles of Tools

Application 1, All Tool Reports (cut-off 100)

ol

critical

DCRTT % PC-lint% QA/C%

-y

Frama-C %% YYY %

jo 350 papuajun
3|GR1IEA paz|lEnjuiun
NSy paulapun
yE3780N053Y
uolsnaay (aqissod)

leAu) Bujsse
doo7 Buneuiwiai-uoy

U 357 00BN
uofsalg J05507
JUBUITIEIS UINGaY pIEAU|
Ja1uod uoppuny pleAU|

1011385900 a1

g,,rjjzs nualajalag

pIlEAU o 20Ualajalag
Jojnog Sundueq

-J0N0 ¥apu) ARy

Lemm— e, pa

Application 2, All Tool Reports (cut-off 50)

o 357 papuauun

nsay pautjapun

¥2a7 ainosay
uolsinaay (a)qissod)

“pljeAy| Buisseq

J d007 Buneuiwiaj-uop

[350 05E)
ualsalg Josso]

JUBITIEIS UING2Y PIEAU|

Jauiod uorauny pleAu|
101135500 a4

TINN JO BAIaaIag

IeAu| jo 33ualajaIaq
Jaqujog Suyfueq

0N apu| AR I

uncritica

stped ungal ajdnpniy
SUIPEOJIIAQ IS |SUOI)
9687 J0 1517 a1a|dwonu)

BIEQ Jo aduey)

Jnsay pasnun
3p0d 2|qeLpRalUN
uolieladQ AJessadauun
oo Aessanauun

uonnz g Sunp noat)

T adAL JajaLEE g

SUjpEojIano AUy
aepdn Josso]
U0|55 36133 JU|BAU|

UORIpLOY 1UE|)

“To afuey) papuaiu|

S96E7 J0 1517 a1a|dwou)

suopze[aq fuip||uod

1 <gupeor) o uospedwo)

"1j0 aquiod o) e

OO IR

“Tuopzlado pauny

] w
[M 880 m E m Et }
= -
EEEEa L W B 573 Foos
& 0 « 3 m
res RN B9 e
“Jo a8ueyd papuajuun “Jo adUeLY) papuaILn _ 4 " - :
ki ey papuaiuun
anss| Alnoag anss| Ajnoag Jo aSueyD papuaun
II| anss| g anoag anss| Ayinoag

stped uangal ajdinpg
RRUE LRI
*Jo 3517 afajdunoou)
“eRq Jo afue)
nsay pasnuy
apoY ajqeLpE IR
:,>_Mmmwumr_r_3

" doo Aessadauun

utinp Jnoauny

" adh] 1aauweleg
Supeojsano awey
aepdn josso]
uoissadx] JuelieAu|

Uoipu0) JueeAy|

0 afuey papuaju

" jo 3617 aja|dusou)
aupIuo)

" jor Uos| eduiny
o sauiod 033523

WOJHA0 2RaLIY

, Tool Reports, Subset (cut-off 35)

UGB ALY

Comparison of Tool Profiles for Both Applications, All Reports

Application 1, Tool Reports, Subset (cut-off 15)

Tab. VII-3

critical
|

140 @0 papuaun

ageLiep paz|
ynsay pauapun
R B2In0saY

uojsanaay |a|quEsod)

T plfenu) Buisseq

dooy Suneuiwei-uoy

Ty 257 0B

uBfIalg J05507
JUILITES UINaY plEAU|
Jaujod uappuny pleru|

104135500 3|14

TN o adualajaIag

“TpIfEAU| o 83U 13)3 13

1aujog Bul|fueg

“Tej0qnQ apul ALy

J0 350 papuaquiun

Appliction

= ynsay paulapun

| seatamosay
uolsinoay (a|qssod)
plleau) Bulssed

=5 007 BuneUILL3-UON

UM 350 010l

uajspald jossa

uImayY pleAu|

oLy pleal
10413 55929y 3|14

Jo Dualajalag

jo aualajalag
1aujo4 u)jBueq
j0ng KapulARLY

, Report Subset

10NS

f Tool Profilesfor Both Appl
-10-

ison of

Compar

Tab. VII-4

True Positives, Subset, State Criterion, with (cut-off 15)

= FramaC TP state with

W PC-lint TP state with

alousjadAlpajag

J0 2SRy papuajuig
anss| AjLnoag

stped uimad ajdiniy
ujpeojang UaEEU0IU|
S5ED) J0 3517 aajdusou|
eJR(Jo aduey)

JJns ay pasnun)

apan a|qeLpeaun)
uapeladg Aessanauun
doo Aessaauun
uonnoaxg 8ulinp noaw
adA] Jajaueley
Buipeopiano auepy
appdn josso]

Uiss 2.16%3 JUBLEAU|
Uonpuoy JueLeAU|

Jo afuey papuiu
Sa5en J0 3517 aajdulou|
Suone ie[aQ Bupijuo)
=Buneo|) jo uostedwoy
10 Jaquiod o] e
MO0 DALY

uo uone)adg anauyy
10 857) papuBILA

BRI, PaEl

uiun
ynsy pauyapun

JEaT a2IN0SaY

unis Inaay 3|qisso4)
pieau) Bussseq

doo7 Bupeujuaj-uoy
e s 002
uaisalg J05507
JUIUTIEIS UING3Y PEAU|
Jayuiod uopouny pijeau|
10143 ssan0y a1
1IN o ualajaiag
plleau jo adualajalaQq
Jauog Suydueq

SpUN0g-J0N0 %apu) Azl

ith (cut-off 15)

iterion, wi

True Positives, Subset, Tool Cr

W FramaC TP tool with

m PC-lint TP tool with

aioudjaddpajag
aguelp papuajuiun
anss| Aanaag

stped uangad ajdijnwg
JuaIsUU)

17 @3] duwoau)

g Jo alel)
J|nsay pasnuy
apoy ajgeyealun

hEssaauun
doo Aessaoauun

= SuLnp Jnoauny

adA 1ajauele g
SUIpE0|JaR0 LEY
agepdn Josso]
uoissaldxg Jue EAu|
UOIIPUOD JUE|IEAL|

0 adLey) papuau

10 617 a)3|duroou|

" BU|jueg

0 uoskeduwo]

0 Jaunod op35e0
O[IIA0 UL

“anauyy
Jo a1 papuajun
a|eLE pazEIIILN
JInsay paulapun
fza]aainosay
uojsIn2ay (ajgisod)

plfeAU| fuisseg
doo Buneuaj-uap

U 25 0B |
uoispalg josso]

LIy plEAU|
uopUn A
10413 ssam0y 3l

ROECIEYEIRIEN]

ROLE-IEYEIRIEN]
1auiog SuBueq

e j0anQ Kapu| 21y

Tab. VII-5: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 1

True Positives, Subset, State Criterion, with (cut-off 20)

o yyy TP state with
m DCRTT TP state with

Bupeol) jo uospeduo)

“J0 350 papuaulun

PC-lint TP state with

W www TP state with

aloudadApajag

BIEQ Jo aBuELp papuauiun
anss|djnoag

siyged uingal ajdiniy
Suipeo|1an0 uasUoIL|
SasED Jo 3517 apajdwonu)
e jo afueyy

JIrsay pasnun

apan a|qeLpealun
uopeladg Aessasauun
doo Aessanauun

UofnI %3 SULNp noaun|

ith (cut-off 20)

adAl Jaawee
SUIpE0j1aA0 aLe

aepdn josso]

Uoissa g Jue i)

iterion, w

UD[IpUO] JUELIZAL)
10 aduey) papuay|
S5E7) J0 15/ alaldwonu|

suofe.epag Supiuo)

-y

10 1auiod 03583

Subset, Tool Cri

H0[JIANY DALY

uo uaneladg anay

itives,

H|GRLEA PazlERUILn
NS Y paulapun

yeaTanosay

True Pos

unjsInaay (9)q/5504)

OWLFNO BDTHO
fer oA

JUaWnAly plAY) Sulssed
doo7 Buneuiwiajuoy
U 851 0B}

Ul alg Josso
UBWIBEIS LMY plfEAU|
Jaquiod uonauny piieau|
101135500 31
“TINN JO @0U3 8 Jag
Pl Jo a0Ua13ja1ag
13juog duydueg

SpUNDg-J0-IN0 ¥apul AzdIy

DCRTT TP tool with
m PC-lint TP tool with

= yyy TP tool with
W TP tool with

3Ry papuaun
anss| Ajunoag
suped winal ajdy iy
U BSEUIL
10 3617 32|dwoau)

ele(] jo aduey)

nsay pasnun

apo) B|geLpEa I
Alpssanauup
doa] hessanauun

Bupnp noau

AL JajaLER

= Suipeojano auey
ajepdn josso]
uojssaidxg Jueliead|
UoppuoD JUELEAU|
=

0 aduey papua
|

10 3617 a32|dwou|

B T[] 11y

Jo uos|eduwo)

0 Jauiod o 35e)

MO[LIBAD DALY
ofeladg anaui iy

“J0 @50 papuaun

a|geLE, PaZIEMUIUN

JYnsay paulapun

ea an0s 2y

uojsInaay (ajgssog)

plEAu) Bujsse 4
doo Suneuiwai-uopy

Lym a5 0 oep

Unjspald Josso]

umjay pleau|
uouny pienL|
104155900y Bl

RCESIEIEIEIE |
Joaduasajalag

1inujog Su)dueq

-joang kapul ALy

Tab. VII-6: Comparison of True Positives and Tool/State Criterion (with ctxt), Report Subset of Application 2

Criterion Transition With With % =] WIO %
Tool TP/ State TP 81 34.32 83 39.34
Tool FP / State TP (impossible) o 0.00 o 0.00

0O o
YooY
=)
e°e2
MS027
0 T
noow
SiNC -
m9037
o -
M3026
© +r
oooa
FERLLWL
Ho000
deuun
ol 4 a a4
0000
nt-.-.r-.-.l..
mPPPP
oL e
88828
FRFEF

Yyy

100.00

92
10

100.00

91

Total

3.32
57.35
100.00

297
62.71

Tool TP/ State FP

15.87

6.45
0.00
70.97
22.58

100.00

a
o]

44

Tool TP/ State TP
Tool FP / State TP
Tool TP/ State FP
Tool FP / State FP

Total

0.00
25.40
58.73

100.00

(0]
16
37

DCRTT

121
211

148
236

Tool FP / State FP

14

100.00

Total

63
47

62
42

Application 2

47.96

42.42

Tool TP/ State TP
Tool FP / State TP

PC-lint Tool TP/ State FP

0.00
48.98

0.00 (o]
48

54 55

o]
54
3

wW/o WIO %

With With %

Criterion Transition

3.06
100.00

3
o8

3.03
100.00

Tool FP / State FP

Total

123 43.16

112 39.30

Tool TP/ State TP

99
3

0 0.00

0O 0.00

Tool FP / State TP (impossible)

Tool TP/ State FP

9.38
0.00
81.25

3
o

26

9.09
0.00
81.82

Teool TP/ State TP
Tool FP / State TP
Tool TP/ State FP
Tool FP / State FP

Total

o
27
3

102 35.79

137 48.07

60 21.05

36 12.63

Tool FP / State FP

9.38
100.00

3
32

9.09
100.00

33

285 100.00

Tab. VII-7: TransitionsTool =Sate, Average, Both Applications

285 100.00

Total

Tab. VII-8: TransitionsTool =State, tool-specific, Application 2

-11-

In order to understand what the reasons, the evaluators
were asked on details of their decision. While in case of
FramaC only the “while(1)”-case was considered to turn a
TP/tool to an FP/state, in case of www an extended context
was considered, based on the knowledge that in the
application pointers or data are initiaized in a context, not
visibleto atool.

This feedback indicates a need to refine the definition of
the state criterion. However, a deeper anaysis of the data —
not presented and discussed here — suggests that both criteria
gill do not cover extreme cases of reports, which do
invalidate the overal evaluation if they occur at a high rate
compared to other reasonabl e reports.

C. Uniqueness and Complementarity of Tools

In the previous study the possibility to increase
senditivity due to combination of two tools was
demonstrated. Due to questionable reports which for the time
being cannot be removed from the criticality categories
“critical” and “warning” because this would have to be done
manually case-by-case, the results for sensitivity would be
guestionable, too.

The current conclusion on this dilemma is that possibly
an earlier separation on the level of tool defect types may
help, i.e. to map questionable defect types immediately into
the ignored-group. Later, having mapped them aready on
standard defect types, it is not possible, because aso
reasonable reports would be moved, too. As removing
reports is a very sensitive decision regarding evaluation and
comparison of tools, a degper and more careful consideration

is required.
oo 825 | concomcr
(] (]
407
61
33
4
0
548
11
(]
(]

B ON=S OB ON =

Tab. VII-9: Coincidence Profile for Both Applications

The content of Tab. VII-9 may help to understand the
issue. While in case of Application 1 about 25% of the
reports are shared with 2 or more tools, for Application 2 the
equivalent figure is less than 2%, i.e. the difference amounts
to about one order of magnitude.

In consequence, in case of Application 1 about 75% of
reports are unique contributions of a tool, while the
equivalent figure for Application 2 is about 98%.

This latter figure suggests (and thisis confirmed by other
data not shown here), that most of the many unique
contributions may not be considered as useful, supposing
that a higher percentage of reasonable reports should be
shared.

Tab. V1I-10 provides the list of observed combinations for
which tools share the same report, i.e. they report the same
standard defect type for the samefile and line.

While in case of Application 1 up to 4 tools shared a
report, the equivalent figures amounts to 2 tools only, in a
very few cases.

° Tool Combinations

4 0.79 FramaC YYY
2 0.40 FramaC yyy QAC
29 5.74 FramaC
4 0.79 FramaC yyy DCRTT QAC
7 1.39 FramaC yyy DCRTT
1 0.20 FramaC DCRTT QAC
4 0.79 FramacC DCRTT
1 23 455 yyy DCRTT
23 4.55 yyyDCRTT QAC
79 15.64 yyy
18 3.56 yyy QAC
92 18.22 DCRTT
12 2.38 DCRTT QAC

43 8.51 PC-lint
164 32.48 QAC
505 100.00

9 1.61 yyy DCRTT
362 64.76 yyy

58 10.02 DCRTT

Total

2 1 0.18 DCRTT WWW
o8 17.53 PC-lint
1 0.18 PC-lint www

32 5.72 www
559 100.00

Tab. VII-10: List of Tool Coincidences

D. Unit Tests vs. Tool Reports

In order to compare the impact of unit tests to the results
of analyses regarding defect detection, both data streams
have been synchronized using filename and line number.

Total

Coverage information per line together with additional information on
observed exceptions or defects found is shown for unit testing. In the unit
test block at the bottom of

Fig. VII-1threearethreerows:

» Thelowest row represents the line type: gray/normal
or black/conditional expression.

» The middle row indicates the coverage: red/no
coverage, green/full coverage, blue/false covered,
yellow/true covered.

» The upper row indicates whether an exception
occurred or afault was detected: red/exception,
magenta/fault.

Then the 5 tools follow bottom up with 4 traces each

related to the 4 combinations of criteriaand context.

From the analyses the false and true positives related to a
line are shown for each of the 4 combinations resulting from
with/without context and tool and state criterion using 3
colours:

 vyellow/false positive

 red /truepositive

» blue /trueand false positive are reported for aline

This alows to seeing where tools reported FP or TP for a
covered or non-covered line.

Asin case of Application 1 all defects found during the unit tests were
aready fixed, neither defects nor exceptions occurred, and 4 exceptionsin
case of Application 2 (3 of them shown at the bottom trace of

Fig. VII-1).

Tab. VII-11 provides information on the unit tests for both
applications. In addition, figures were added for robustness
testing as done by DCRTT. While unit testing primarily
addresses coverage and compliance with requirements,

-12-

robustness testing aims to provoke activation of defects by a
large number of test stimuli.

Tab. VII-12 provides figures on the distribution of TP as
reported by the tools over covered and non-covered lines, for
the 4 combinations of criteria and context cases and for both
applications. Surprisingly, the probability to find a TP in a
covered line is about two times higher than to find aTP in a

non-covered line. This needs further investigation. It may be
amatter of complexity of the code.

Also, more detailed figures on the defect profile
regarding covered and non-covered lines should be derived
to get a better understanding why the TP were not detected
by aunit test.

Overview on Number of Unit Tests and Functions

. Average Coverage
TestMode Application " unctions Performed _ Test/
underTest Unit Tests Function stmt cond
1 368 954 2,59 94,14 89,63
manuallly
2 60 164 273 85,03 60.41
1 610 1042420 170889 87,35 95,78
DCRTT
2 466 216348 46427 76,89 76,08

applcation e ™es | Functons |

total affected by test total affected by test
1 39 25 610 368
2 40 24 557 60

Tab. VII-11: Overview on Figures of Unit and Robustness Testing

TPin non-

covered
lines

Total TP
327

% TP in
covered /
total TP

togl fwith bt 25 302 7.85 92.35' 0.1656 0.3471
tool Jwithout chxt 23 32 336 6.87 93.13' 0.1523 0.3536]
1
state/ with cbdt 7 104 111 8.31 93.69' 0.0484 0.1185
state / without chet T 105 112 625 93.?# 0.0454 0.1207
tool fwith cixt 36 233 268 13.38 Bs.szl 0.1583 0.2852
tool fwithout cht 23] 215 243 13.31 EG.B‘# 0.1460 0.2632
2
state/ with cixt 14 131 145 9.66 91134' 0.0619 0.1603
state / without cbxt 15 145 160 9.38 BGGSI 0.0664 01775
Tab. VII-12: TP Reportsvs. Coverage
Legend I tool criterion / w/o
WWW . state criterion / w/e
topl criterion / with
- I O s I state criterion / with
. {0 I AT e
PC-lint I L O !
False Dositive WTrue Dositive
m .
] " W7D and FP reported for the same line
1 Pty
DCRTT
3]
{0 YUY 1 DY AR MO | A0 N0 O[O A 0O (11 O R [) | 210 (1A | (I |
T R e A I |1
yyy s (O R R P i
EErception BFault
none (Appl.2)| © Wior Covered WPalse Covered True Covered WBoth Covered
BCondition line WStat line
B
uT S {1 o 0 A RO 000
3% 55 80 91 M23 134 159 173 195 216 234 250 267 277 2587 74 56 1le LZ9 L45 L5 175 1a3 196 2lg:

Fig. VII-1:Merge of Tool Reports with Coverage Information from Unit Testing

-13-

The presence of TP in covered lines leads to the
conclusion that to a magjor degree unit tests and analyses are
complementary. This applies to static and dynamic analysis.

As usually the god of unit testing is to prove fulfilment
of requirements (in a positive manner) — apart from
requirements requesting fault injection — and the goa of
analysis is to positively determine whether defects are
present or not — vaid for static and dynamic anaysis, this
result is not surprising.

Whether the absence of defects for lines for which the
tools issued reports while no defect was detected or left as a
result of unit testing, indicates an overhead induced by tools
needs to be subject of further investigations.

A user of Application 1 reported that the application
behaves quite stable. As some of the critical defects detected
by analyses are related to the error handling parts, this seems
to be reasonable. Also, it indicates the added value of
analyses, pointing to critical locations not yet detected,
compared to unit testing and verified-by-use as discussed in
Ch.V.D.

VIII. LESSONSLEARNED

Due to the additional application software with different
programming styles and another programming language and
due to the additional tools more issues had to be tackled to
get a common view on the evaluated tools. Compared to the
ESVW study the evauation was highly challenging and
several issues of evauation could not be closed. In case of
Application 2 a fair view on the tools could not be achieved
due to the heterogeneity and — in part — poor quality of the
reports due to a high number of trivia reports.

A. Defect Types

New defect types were found by the new tools, the new
language and the new applications, because the list of defect
types as outcome of the previous study did only reflect the
status of Application 1 and the applied tools.

In fact, the number of defect types was doubled from 20
to 40 and it can be expected that it will grow further if the set
of tools and the set of software applications will be extended,
again.

The mapping between tool-specific messages and
standard defect types had to be automated to be more
flexible in the mapping process and to save effort.
Automation of this step aso supports a consistent
redefinition of the mapping regarding aready existing tool
reports.

At the beginning — in ESVW - there was nearly a 1:1
mapping between tool-specific defect types and the standard
defect type. Although the naming of defect types differed
from tool to tool, only one tool-specific type was mapped on
a standard defect type per tool in most cases. However, by
the new tools this changed alot.

B. Evaluation Criteria

An analysis of the obtained results yields that still the
two applied criteria are not sufficient to get a clear and fair
picture regarding the position of the tool supplier and the
developers:

The tool criterion is an exact criterion regarding whether
the tool report complies with the content of the source code.

However, it may also cover trivid cases, yielding TPs
which may be considered as unjustified. Especialy when
many such reports are issued by one tool but not by others, a
fair comparison is not possible. Counting only the TPs would
give such atool a significant advantage compared to a tool
not reporting such a trivid case, or even intentionaly
reducing the amount of reports for such a case.

The state criterion attempts to exclude trivial cases of
getting an unjustified TP, but it turned out that there is a
wide range of interpretations by individuals possible.

This disqualifies the criterion for comparison of tools,
unless it is guaranteed that al involved persons have the
same understanding. In part, misinterpretations can be
detected by conflicts during the consolidation phase. But if
al persons came to the same wrong conclusion, only
additional manual and thus costly checks can exclude such
wrong decisions.

The principa issue is to accurately flag TPs which are
critical regarding the system state. However, the current rules
are not such conclusive that only reports are issued which are
really critical in the given context.

Further, there are messages like “Loss of precision”,
whichin part cannot be avoided by a developer because they
are related to the limitations of the representation of numbers
in context of a computer, implying that

a. arithmetic operations cannot be interpreted in the
classica mathematical senseg, i.e. a result may exceed
the range of the data type,

b. not al rea numbers in mathematical sense can be
represented as float or double,

c. not all float or double numbers can be represented as
integers.

This weakness leads to a large number of reports which
have to be classified as FPs at the end regarding the system
state, while still a few ones may be TPs for both criteria. But
the final conclusion can only be done manually.

In fact, high numbers of reports resulting in false
positives effectively lead to FNs, because not all reports can
be manually analysed, implying to miss reported TPs. Thisis
afact which has aready been identified in the course of the
ESVW study, so it is not realy new, but this issue occurred
again in this study.

Currently, three approaches (most probably non-
exhaustive) have been identified which support reduction of
the manual effort for such cases:

1. A tool reduces the number of reports related to the

same origin of adefect.

2. A combination of tools support to reduce
automatically the number of reports related to the
same origin of adefect by comparison.

3. A developer does apply a programming style by
which the number of reports resulting in FPs is
reduced or even 0.

-14-

C. Tools

1) FramaC

The analysis with Frama-C required additiona effort due
to

» missing support for verification of top-level functions,

(currently only one entry point can be specified),

* missing configuration support, and

 poor reporting capabilities at generation of alarge

unstructured data stream.

In order to make the Frama-C results comparable to the
other tools aready applied to Application 1, an artificial
entry point was established manually, caling al top-level
functions. To build such an entry point is non-trivial and
required a lot of additional, unplanned effort, as the full
environment for the call must be provided for each of the
functions, implying declarations for every parameter of any
such function. This task had to be performed manually.

There was no hint on what is the best set of configuration
parameters regarding a certain size of an application. Starting
with the highest precision and then cutting down in haf the
configuration parameters until a run terminated normally
within a reasonable time, resulted in a number of non-
terminating runs, starting with a duration of about a week,
and then approaching step-by-step a configuration which
terminated after some days. No indication on the achieved
progress was provided during or the end of an aborted run.

The huge amount of unstructured reports required specia
handling. A list of reported defect types does not seem to
exist in the documentation, especially regarding critical ones,
and there is no conclusive description how the relevant
reports can be filtered.

2) yyy

For Application 2 an increased number of reports
classified as critical was generated. This was much more
than expected according to the experience with this tool in
context of Application 1, and compared to the other tools.

To reduce the manua effort the use of heuristic rules was
considered to decide on TP or FP automatically. But the
results are not considered as sufficiently reliable, currently.
More experience is required to consider such results for a
comparison with other tools.

The major origin of the occurrence of such a high
number of reports is as follows. as it is C++ code the tool
expects that all object member variables areinitialized in the
constructor. But in nearly al cases of Application 2 this is
not true: initialization is done in separate functions, of which
the cadl isnot directly visible.

The tool vendor was contacted for clarification. The
given recommendation is to apply the tool as early as
possible during development, and to modify the code by the
feedback from tool. Then the tool would report more
conclusively.

After dl, the results for Application 2/ Tool 2 cannot be
considered to be representative.

3) DCRTT

DCRTT was aready applied to a platform-independent
subset of Application 2, and critical defects were fixed. This
may have introduced bias regarding the found defects, but

not only for DCRTT but aso for tools addressing similar
defect types.

DCRTT generated in case of Application 2 a significant
number of reports on “unreachable code” and “invariant
condition” which mainly result in an FP regarding the state
criterion or in case of “w/o context”. This is a consequence
of insufficient coverage due to either defects preventing to
reach certain locations, or specific conditions difficult to
fulfill with the stimulation methods employed by DCRTT,
such asfilling queues related to global pointers.

4) PC-lint
The following defect types were issued frequently for the
full set of reports at criticality “critical” and “warning”. If
not explicitly mentioned, al reports were classified as TP
according to the tool criterion. But most of these reports can
be considered to betrivial.
» Dereference of NULL
Only a few ones, some shared with other tools.

» Lossof precision
Most of the reports result in an FP regarding the state
criterion.

» Cast to pointer of incompatible types

Really useful and nearly only reported by PC-lint (1
report by Tool www)

» Name overloading

Most of the reports result in an FP regarding the tool
and state criterion.

» Parameter type mismatch

All reports were classified as FP regarding the state
criterion.

* Unused result

Most of the reports result in an FP regarding the state
criterion.

» Unused enum-literal in switch with default

For 6 switches about 1300 reports were issued,
formaly TP according to the tool criterion, but in
principal unjustified and therefore FP according to the
state criterion as the default was present and no impact
on system state or logic.

The reporting approach of PC-lint could be improved
regarding minimization of the number of reports, e.g. in case
of unused enum-literals. There are 4 levels for activation /
deactivation of reports, but the levels do not match with the
criticality levelsdefined in Tab. VI-3.

PC-lint allows deactivating some message types, but then
TPs could aso be deactivated, eg. regarding loss of
precision, depending on whether the operation is intended or
not, because potential TP and FP cannot be clearly separated
without taking the risk of dropping rea TP.

5) www

This tool was applied to Application 2, only. Very few
reports on invalid pointers were issued. Severa FP in case of
“Name overloading” were detected because it reported
overloading between a parameter or loca variable with a
member of struct or class.

6) QA/C

In case of Application 1 thistool achieved the best values

for sengitivity. Please refer to [1] for detalls.

-15-

IX. CONCLUSIONS

As suggested at the end of the previous study, the
additional tools and software brought in new aspects which
enriched the knowledge on verification tools and
applications and led to a number of conclusions and
suggestions on improvements for the verification process.

The experience from both studies confirms that the
success of tool usage heavily depends on the chosen
verification tools and their integration in the development
cycle. Selection of suitable tools implies sufficient
knowledge on their efficiency w.rt. the software to be
verified.

The diverging results from both studies regarding the
efficiency of the tools indicate that more is needed than just
to buy and apply atool to succeed at the end.

A number of new standard defect types had to be added
to the database, the criterion for tool evaluation had to be
reconsidered and complemented. A higher degree of
automation alowed considering all the reports issued by the
tools and to derive profiles on defect types reported by the
tools, for the whole application.

A disappointing result is that the quality of the data
obtained by the new tools for the previous and the new
application is rather poor compared to that one of the ESVW
study. However, the principal issues making evaluation
difficult were identified and give guidance towards
improvement.

The spectrum of issued reports is rather broad: the
number of reports varies from 800 to 12.000 for full
Application 2, and from 40 to 500 for the chosen subset. The
value of the reports varies from trivial to of high value.

A major result is that the current evaluation criteria need
to be improved and aso the verifiability of the application
has to be considered. Optimization of the whole verification
process requires consideration of the defect identification
and reporting capabilities of a tool and the degree to which
an application supports the analyses. In addition to the
evaluation criteriafor atool, also a metric should be defined
characterizing the verifiability of an application.

If many reports result in FP this may not necessarily
imply a weakness of a tool. It may also be an indicator for
potential improvements in the application. A lot of FP could
be avoided when considering the tool reports in a
constructive manner to improve the qudity of the code and
not in a destructive manner only causing overhead. The more
FP are issued the higher is the probability of missing critical
reports. This should motivate to tune the code of an
application.

A tool may be sensitive to certain defects. Their
occurrence may block the tool to report more critical defects,
or may cause an explosion regarding the number of reports.
This observation confirms previous conclusions on this
issue, demanding to apply a tool as early as possible in the
coding phase to prevent by the given feedback that defects
are multiplied in the course of development.

Many reports should not necessarily be the ultimate goal
of atool, but a minimized set of reports highlighting the
essential issues for the given context, aso implying

minimized manua analysis effort. Duplication of reports and
multiple reports with different defect types on the same
origin of a defect should not be considered as of advantage
for atool.

The comparison of results from anayses and from unit
testing confirmed the expectation that both verification types
are complementary to a high degree. Thisis mainly a matter
of the verification goals. While the main goal of unit testing
is to demonstrate compliance between implementation and
requirements in order to get acceptance, the main goa of
verification tools is to demonstrate that defects still are
present. Also, the results show that a high coverage figure as
a result of unit testing does not necessarily imply that tools
will not find defects any more in such lines, even if al
defects found during unit testing have been fixed.

The experience achieved in the course of this study, but
also parts of the automated process chain could be reused in
rea projects, regarding

* definition of the issues of verification and the contents
of the verification plan,

* classification and priorization of reports,

» harmonization of report streams coming from different
tools, thereby reducing the amount of reports to be
manually analysed, and easing the use of more than
onetooal,

« derivation of figures on distribution of defects across
the application.

ACKNOWLEDGMENTS

The results presented above are an outcome of contract
DLR-50PS1606 of the Space Administration of the German
Aerospace Center (DLR) on behalf of the German Ministry
of Economics and Energy (BMWi).

We thank our colleagues Hans-Juergen Herpel, Mladen
Kerep (Airbus Defence and Space, Friedrichshafen,
Germany) and Anton Fischer and Mario Pinto (etamax space
GmbH, Brunswik, Germany), as well as Thomas Boll
(BSSE) for their highly valuable contribution in the study.

The authors also thank the suppliers of tools 2 (yyy) and
5 (www) who provided evaluation licenses for their tools.

Also, we would like to thank Sabine Philipp-May (DLR)
for her vauable suggestions and contributions to the
discussionsin the course of the project.

REFERENCES

[1] Ch.R.Prause, R.Gerlich, R.Gerlich, A.Fischer: ,Early Results from
Characterizing Verification Tools Through Coding Error Candidates
Reported in Space Flight Software”, Eurospace Symposium
DASIA'16 "Data Systems in Aerospace”, 10 — 12 May, 2016, Tallinn,
Estonia

[2] VectorCAST, https://www.vectorcast.com

[3] cppunit, https://de.wikipedia.org/wiki/CppUnit,
cppunit.sourceforge.net
[4] gcov, https://gce.gnu.org/onlinedocs/gec/Geov.html

-16-

