
BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
1

FAST

Assessment and Evaluation of Fully Automated

Source-code-based Testing Strategies

Data Systems in Aerospace DASIA 2013

May 16th, 2013, Porto, Portugal

ESA Contract No. 4000102645

BSSE Team: Rainer Gerlich, Ralf Gerlich, Thomas Boll

DNV Team: Bengt Solheimdal Johansen, Kenneth Kvinnesland

ESA Technical Officer: Marek Prochazka

Dr. Rainer Gerlich BSSE ESA/ESTEC Det Norske Veritas AS (DNV)

Rainer.Gerlich@bsse.biz Marek.Prochazka@esa.int Kenneth.Kvinnesland@dnv.com

Ralf.Gerlich@bsse.biz Bengt.Solheimdal.Johansen@dnv.com

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
2

Contents

◼ The FAST Process

Fully / Flow-optimised Automated, Source-code-based Testing

◼ Verification Challenges and Findings

◼ Conclusions

◼ The FAST Process

Fully / Flow-optimised Automated, Source-code-based Testing

◼ Verification Challenges and Findings

◼ Conclusions

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
3

The FAST ProcessThe FAST Process

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
4

The FAST Test Process
Principal Flow

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
5

The FAST Test Process
Detailed Flow

Source

Code Auto-

Porting

Auto-

Porting

Coverage FilteringFiltering

ImprovementsImprovements

Pre-Test

Report

Pre-Test

Report

Test

Report

Test

Report

ImprovementsImprovements SpecificationSpecification

Test Vectors

Input - Output

Test Vectors

Input - Output

ConfirmationConfirmation

Test Environment

Host

Stimulation

Fault Injection

Platform

Diversification

Stimulation

Fault Injection

Platform

Diversification

Legend:

Auto-Process

Manual Activity

Test Drivers
+

Test Vectors
incl. Auto-Comparison

expected - observed

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
6

The Application SoftwareThe Application Software

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
7

The Software

◼ Earth Observation Satellite

assumed not to contain any further critical defects

tested according to ECSS E-40 and Q-80, version B and ISVV Guide

◼ Characteristics

❖ Set 1: mission-critical (subset)

anomalous behaviour would cause or contribute to a failure of the satellite

system resulting in permanent and/or non-recoverable loss of the satellite's

capability to perform its planned mission

❖ >1500 functions

❖ 65 KLOC

❖ Set 2: full set

❖ >3000 functions,

❖ 165 KLOC

◼ Earth Observation Satellite

assumed not to contain any further critical defects

tested according to ECSS E-40 and Q-80, version B and ISVV Guide

◼ Characteristics

❖ Set 1: mission-critical (subset)

anomalous behaviour would cause or contribute to a failure of the satellite

system resulting in permanent and/or non-recoverable loss of the satellite's

capability to perform its planned mission

❖ >1500 functions

❖ 65 KLOC

❖ Set 2: full set

❖ >3000 functions,

❖ 165 KLOC

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
8

Verification Challenges and FindingsVerification Challenges and Findings

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
9

Findings

Category Description #Findings Status

I
Findings directly related to observation of an anomaly /

analysis required

2
update

requested

12

non-critical,

either in the

current

version

or

in general

II Findings identified during analysis of a reported anomaly 11

III

Findings identified due to use of

different utilities (diversification) /

no analysis required

DCRTT support

utilities
16

Compiler/Linker 11

IV
Findings identified by comparison of expected and

observed values
(n/a)

Total 52

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
10

Finding Examples

#define QUEUE_SIZE 10

#define BUFFER_SIZE 1024

typedef struct TyQueue {

unsigned int start;

unsigned int len;

} TyQueue;

unsigned int head=0;

unsigned int tail=0;

unsigned int next=0;

bool full=FALSE;

TyQueue queue[QUEUE];

char *buffer[BUFFER_SIZE];

void storeQueue(char *buff, unsigned int len){

if (head != tail || full==TRUE)

next = queue[head-1].start +

queue[head-1].len;

if ((next + len) < BUFFER_SIZE){

queue[head].start=next;

queue[head].len =len;

memcpy(buffer+next,buff,len);

head++;

if (head >= QUEUE_SIZE)

head=0;

if (head == tail)

full=TRUE;

}

}

Initially:

head == tail == 0 && full == FALSE

Next steps:

head > 0

Wrap-around:

head == 0 && full == TRUE

while possibly still tail == 0

access intended to

queue[QUEUE_SIZE-1]

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
11

Coverage
Stimuli Dependency

A small number is sufficient to start with anomaly analysis

Moderate increase of coverage with number of stimuli

A block is a set of statement

sequences which are executed

one after the other once the

first statement has been

executed.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
12

Tool InterfacesTool Interfaces

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
13

Interfaces of the
FAST Test Process

Static Analysis

Coverage Anomaly

Reports
Timing Data Range

Monitoring

FAST Process

Prototypes

Types

W
h

it
e

-B
o

x
B

la
c

k
-B

o
x

C
o

n
tr

a
c

ts

Other

Metrics

Comparison

Exp. – Obs.

Test Report

Interface

Test Management

Tools

Test

Driver

on request

Test Case Export

Constants

Run-Time

Information

Constraint-

Based Test

Data

Generationin preparation

Constraints

Stimulation

Fault Injection

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
14

From Test Preparation to
Result Evaluation

(Initial)

Constraints

Source

Code

Test

Configuration

Test Execution

all functions

Test Report

Test

Driver

Upgrade

Test Case Candidates

to

Test Cases

Evaluation

code update

Evaluation

more

constraints

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
15

ConclusionsConclusions

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
16

Limitations

◼ L1

❖ Since the theoretical number of input combinations may be very large, the tool

may not select the particular input combination necessary to exercise specific

parts.

◼ L2

❖ Coverage of requirements is not considered in test data generation

❖ Additional test cases typically need to be added manually

◼ L3

❖ Unknown “Design by Contract” may lead to false positives

❖ Have to be manually removed by introduction of (few) constraints

◼ L4

❖ Tool not yet qualified

❖ Interface to qualified test management tools would remove this limitation

◼ L1

❖ Since the theoretical number of input combinations may be very large, the tool

may not select the particular input combination necessary to exercise specific

parts.

◼ L2

❖ Coverage of requirements is not considered in test data generation

❖ Additional test cases typically need to be added manually

◼ L3

❖ Unknown “Design by Contract” may lead to false positives

❖ Have to be manually removed by introduction of (few) constraints

◼ L4

❖ Tool not yet qualified

❖ Interface to qualified test management tools would remove this limitation

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
17

Advantages

◼ A1

❖ Automatically generated unit test suite providing high structural coverage

❖ Amount of coverage depends on code structure

◼ A2

❖ Large amount of stimuli exposes S/W to inputs normally not considered

❖ Reduced impact of engineer’s bias, additional validation element

◼ A3

❖ Assumed to increase path coverage over usual coverage requirements

❖ Measurement of basis path coverage in tool available

◼ A4

❖ Multiple levels of software are tested together instead of test in isolation

❖ No classical integration test, but useful in finding problems

◼ A5

❖ Can reveal complex programming style problems

❖ Can find defects that cannot be found by rule-based static analysers

◼ A1

❖ Automatically generated unit test suite providing high structural coverage

❖ Amount of coverage depends on code structure

◼ A2

❖ Large amount of stimuli exposes S/W to inputs normally not considered

❖ Reduced impact of engineer’s bias, additional validation element

◼ A3

❖ Assumed to increase path coverage over usual coverage requirements

❖ Measurement of basis path coverage in tool available

◼ A4

❖ Multiple levels of software are tested together instead of test in isolation

❖ No classical integration test, but useful in finding problems

◼ A5

❖ Can reveal complex programming style problems

❖ Can find defects that cannot be found by rule-based static analysers

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
18

Use in the Software Suppliers
Test Process

◼ Apply static analysis tool to remove as many poor coding

practices as possible

◼ Apply DCRTT tool

◼ Investigate issues reported by DCRTT as potential errors

◼ Review auto-generated test suite using objectives from e.g. ECSS

E-40 or DO178 regarding:

❖ requirement coverage,

❖ additional robustness issues.

❖ This should give you the structural coverage, as well.

◼ Add test cases manually based on the output from the review

◼ Apply static analysis tool to remove as many poor coding

practices as possible

◼ Apply DCRTT tool

◼ Investigate issues reported by DCRTT as potential errors

◼ Review auto-generated test suite using objectives from e.g. ECSS

E-40 or DO178 regarding:

❖ requirement coverage,

❖ additional robustness issues.

❖ This should give you the structural coverage, as well.

◼ Add test cases manually based on the output from the review

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
19

Use in ISVV

◼ Apply DCRTT tool as an alternative or in addition to static

analysers.

◼ It’s important to be as complementary to the supplier’s process as

possible.

◼ Apply DCRTT tool as an alternative or in addition to static

analysers.

◼ It’s important to be as complementary to the supplier’s process as

possible.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
20

Acknowledgement

The FAST team would like to thank

◼ the ESA project which provided sources of

its flight software,

◼ SciSys for providing QERx,

◼ EADS Astrium for providing the RTEMS

Product,

◼ the German and Norwegian national

space agencies for funding the activity.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
21

Thank you for your attention!

Questions?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
22

Finding Examples

file1.h
typedef struct TyCmdDescr{

unsigned int cmd;

unsigned int minLen;

unsigned int maxLen;

} TyCmdDescr;

TyCmdDescr cmdDescr[];

file1.c
#include “file1.h”

#include “file2.h”

TyCmdDescr cmdDescr[]={{cmd1,3,10},  };

void recvCmd(char *cmdData, unsigned int offset, unsigned int entry) {

unsigned int len;

memcpy(&len,cmdData+offset,sizeof(unsigned int));

if (len >= cmdDescr[entry].minLen)

execCmd(cmdData,offset);

}

file2.h
void execCmd(char *cmdData, unsigned int offset);

file2.c

#include “file2.h”

char buffer[10000];

void execCmd(char *cmdData, unsigned int offset){

unsigned int len;

memcpy(&len,cmdData+offset,sizeof(unsigned int));

memcpy(buffer,cmdData+offset+ sizeof(unsigned int),len-3);
}

check on length

implicit dependency

between two different, independent entities

4 GB corruption !

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
23

The FAST Test Process
Flow of Test Steps

Coverage Evaluation
final evaluation

if required for target

Resource Evaluation
final evaluation of

resource consumption

Report Evaluation
comparison of results

host-targetTest Driver Execution
to get reference results for later

comparison with target

Input-Output Correctness
upgrade of input-output vectors

in test drivers to test cases

Resource Evaluation
preliminary evaluation of

resource consumption

Resource Evaluation
pre-evaluation of

resource consumption

Coverage Evaluation
regarding faults

impacting coverage figures

Identification of
Critical Dependencies

based on certain Fault Injection
capabilities

Minimisation of Anomalies
on Host

Robustness Evaluation
based on Fault Injection,
degree increasing with
number of test cycles

Optimisation
on Host

Finalisation
on Host

Coverage Optimisation
•Merging of coverage figures
from different test runs
•Use of CBTDG to analytically
determine test stimuli for
missing coverage

Iterations over FI modes
and

modifications of the code

Test Driver Execution
to get reference results for later

comparison with target

after any modification of the code

Iterations to improve
coverage and

resource consumption
requiring modifications of the code

Iterations to achieve compliance
between specification and
implementation requiring
modifications of the code

Iterations to achieve compliance
between specification and
implementation requiring
modifications of the code

Increasing number of stimuli

Final Evaluation
on Target

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
24

The Project and the Application SoftwareThe Project and the Application Software

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
25

Project Goals

◼ Objective 1

Perform an assessment of the fully automated, source-code-based testing

(FAST) by applying it on realistic spacecraft flight software.

◼ Objective 2

Evaluate applicability and scalability of the approach in the space domain, with

focus on efficiency and effectiveness in spacecraft flight software as a whole or

some of its subsystems.

◼ Objective 3

Evaluate source-code-based testing for fault identification sensitivity, testing

coverage, cost efficiency, and usability both in nominal validation and

Independent Software Verification and Validation (ISVV).

◼ Objective 4

Prepare and disseminate a set of guidelines and recommendations for the

automated source-code-based testing process, and put it in the context of the

ESA software development process.

◼ Objective 1

Perform an assessment of the fully automated, source-code-based testing

(FAST) by applying it on realistic spacecraft flight software.

◼ Objective 2

Evaluate applicability and scalability of the approach in the space domain, with

focus on efficiency and effectiveness in spacecraft flight software as a whole or

some of its subsystems.

◼ Objective 3

Evaluate source-code-based testing for fault identification sensitivity, testing

coverage, cost efficiency, and usability both in nominal validation and

Independent Software Verification and Validation (ISVV).

◼ Objective 4

Prepare and disseminate a set of guidelines and recommendations for the

automated source-code-based testing process, and put it in the context of the

ESA software development process.

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
26

Project Organisation

Team

◼ BSSE, prime

o experience with the FAST process

o demonstration of capabilities of BSSE tool “DCRTT”,

◼ DNV

o experience in testing and verification

o experience in ISVV

Generation of Test Data

Test Execution and

Results Analysis
Evaluation

Project Management

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
27

Histograms on Blocks and Conditions

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

#
 o

f
F

u
n

ct
io

n
s+

 1

of Conditions in a Function

Functions vs. Decision Count

1

10

100

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

#
 o

f
F

u
n

ct
io

n
s

+
 1

of Blocks in a Function

Functions vs. Block Count

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
28

Verification Issues

Verification Issue Done Comment

Robustness 
Injection of invalid inputs, modification of return values,

stimulation of const-elements, overriding of initialisers

Resource Consumption Figures were recorded, but not evaluated

Critical Dependencies


Internal Interfaces
 Injection of invalid inputs, modification of return values,

stimulation of const-elements, overriding of initialisers

Code – Data Interfaces
 Injection of invalid inputs, modification of return values,

stimulation of const-elements, overriding of initialisers

Platform Dependencies


Different gcc-compiler versions

Reachability of Code
 Deadcode in context of anomaly analysis

Coverage figures

Input – Output Correctness No references available

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
29

Finding Examples (1 of 4)

memcpy(dest,src,para-3);

What if para < 3 ?

Nothing copied at all ?

Nearly 4 GB copied !

High fault potential, if activated !

Check if relevant

for (i=0;i<limit;i+=para)

What if para == 0 ?

Endless loop !

High fault potential, if activated !

Check whether of relevance !

file1.c

#define MYLIT 999

file2.c

typedef enum{ myLit=999} TyLit;

What if value is changed ?

Maintenance !

Inconsistency !

Dependency known ?

Which part needs to be re-tested ?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
30

Finding Examples (3 of 4)

int myCopyFunc(const int * const src, const int * const dest, unsigned int len);

library function: body is hidden

int myCopyFunc(const int * const src, const int * const dest, unsigned int len) {

/* something else */

memcpy(dest,src,len);

/* something else */

return <value>;

}

common.h

typedef enum {  } TyEnum1;

typedef enum {  } TyEnum2;

prototypes.h:

#include “common.h”

extern void func1(TyEnum1 para1);

extern void func2(TyEnum2 para1);

bodies.c:

#include “common.h”

#include “prototypes.h”

void func1(TyEnum1 para1) {  }

void func2(TyEnum1 para1) {  }

Not issued:passing arg 1 of `memcpy' discards qualifiers from pointer target type

Found by analysis of an anomaly

gcc 3.2.3: no message issued

gcc 3.4.5: message issued

Found by platform diversification / porting

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
31

False Alarms Issues

◼ What is a false alarm?

❖ violation of a rule without having fault impact?

❖ identification of fault potential without having fault impact in the current version?

❖ request for confirmation of fulfilment of a pre- or post-condition?

◼ How are alarms raised in case of FAST / DCRTT?

❖ by analysis of required conditions for building an executable

❖ by raising an anomaly at run-time (exception, abort, timeout)

❖ by missing coverage identified at post-run-time

❖ by code analysis in context of an observed anomaly

◼ Required: clear rules for assessment

❖ How to deal with “design-by-contract”?

❖ What are the demands on robustness?

◼ What is a false alarm?

❖ violation of a rule without having fault impact?

❖ identification of fault potential without having fault impact in the current version?

❖ request for confirmation of fulfilment of a pre- or post-condition?

◼ How are alarms raised in case of FAST / DCRTT?

❖ by analysis of required conditions for building an executable

❖ by raising an anomaly at run-time (exception, abort, timeout)

❖ by missing coverage identified at post-run-time

❖ by code analysis in context of an observed anomaly

◼ Required: clear rules for assessment

❖ How to deal with “design-by-contract”?

❖ What are the demands on robustness?

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
32

Constraints and Initialisation

Constraint

Sets

Atomic

Constraints
Instances Reduction

28 52 1328 25.5

PARA const 7 =< elem len =< size buffer ; const 5 =< elem ind < elem len ;

int myFunc(int ind, int len, char *buffer);

typedef struct TyMyStruct {

int ind;

int len;

char *buffer;

} TyMyStruct;

int myFunc(TyMyStruct para1);

STRUCT TyMyStruct const 7 =< elem len <= size buffer; const 5 =< elem ind < elem len ;

cond case filesToLook funcsToLook void void filesToTest funcsToTest

return paraList

u c file1.c func1initialise * void error_manager.c *

u c file2.c func2_initialise * void start_up.c *

c n *.c *init* * void *.c *

Constraint Set Atomic Constraint Atomic Constraint

Initialisation Patterns

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645

33

Anomaly Identification

Anom.

Type

Checkpt.

Type

Critical

Function

Id Critical

Function
Block Id Cond. Id

Test Id

FUT Id
#Events

Excp Cond Func1 428 13 1 428 1

Excp Block Func2 464 1
none

reached
464 51

Excp Block Func3 605 0
none

reached

607 26

608 26

609 26

610 26

611 26

612 26

6 anomalies reported,

but all have the same source 605

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645

34

Anomaly Identification /
Extended – Index Monitoring

Anom. Type
Critical

Function

Index

Id

Dim.

Index

Min/Max

Observed

Index

Expr.

Test Id

FUT Id

#Event

s

OutOfRange Low Func1 2523 0 min=-1<0 idx1 232 2284

236 2284

OutOfRange Low Func2 2524 0 min=-1<0 idx2-1 232 2284

OutOfRange High Func3 2844 2 0 idx3 281 2339

275 23392 anomalies reported each for

functions with test id 232 and 281

Expr Type Violation Function File

idx1 low min= -1 < 0 func1 file1.c

idx2-1 low min= -1 < 0 func1 file1.c

idx3 high max=965 > 27 func2 file2.c

Expr Type Violation Function File

idx1 low min= -1 < 0 func1 file1.c

idx2-1 low min= -1 < 0 func1 file1.c

idx3 high max=965 > 27 func2 file2.c

Compressed information:

List on Criticial Indices

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
35

ResultsResults

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
36

Test Runs

◼ Host and target platform

FAST: most activities on host, test drivers / regression tests on target

◼ Sensitivity Analysis for the Process

❖ stimuli per function: 50, 300, 3000, 10000

resulting in a total number of stimuli for all functions

1 .. 27 millions

❖ stimulation of parameters

function parameters, optional global data directly accessed by a function

❖fault injection

➢ invalid stimuli (input), NULL pointer

➢ invalid return (modification of return), NULL pointer

➢ assign to const-elements

➢ blanking (0’s) of initialised data

◼ Complementing the application software

❖ generation of stubs for missing function bodies

◼ Host and target platform

FAST: most activities on host, test drivers / regression tests on target

◼ Sensitivity Analysis for the Process

❖ stimuli per function: 50, 300, 3000, 10000

resulting in a total number of stimuli for all functions

1 .. 27 millions

❖ stimulation of parameters

function parameters, optional global data directly accessed by a function

❖fault injection

➢ invalid stimuli (input), NULL pointer

➢ invalid return (modification of return), NULL pointer

➢ assign to const-elements

➢ blanking (0’s) of initialised data

◼ Complementing the application software

❖ generation of stubs for missing function bodies

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
37

Platforms

Host Platform

Hardware/Processor: PC / Intel

OS : Windows7

Native Compiler : mingw 3.2.3 or VC++

Cross Compiler : RCC for RTEMS 4.6

Target Link : Python

Generation of Test Drivers
Cross-Compilation
Comparsion expected - observed

Host Platform

Hardware/Processor: PC / Intel

OS : Linux

Native Compiler : mingw 3.2.3

Simulator : QERx

Target Link : Python

Preparation of Execution Environment
Execution of Test Drivers

DCRTT File Handling Extension

via UART

Python

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
38

Performance / Build

Step Duration / s Comment

Preparation phase
~4000 It covers all analysis activities

performed before the first test of a

FUT is started

for all 84 files and 1530

functions under test

150
for two files under test, 21

functions

Test Build Phase
a few

seconds
Generation of all files required to run a test for a FUT

Test of a FUT

45
50 stimuli, one function, including

execution of the test drivers on

host and target and generation of

part of inputs for documentation,

of course, this figure depends on a

FUT

50 stimuli

980 1 Mio. stimuli

Complete test run
1900

stimulation, identification of test

drivers, test driver execution on

host and target, test report

generation

1.1 Mio. stimuli, 2 files, 21

functions

one of the 21 FUTs took 980

seconds (1 Mio. Stimuli), i.e.

50% of the overall time

170 200 stimuli, 1 file, 1 function

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
39

Performance / Evaluation

Step Duration / s Comment

Test Driver

Generation
~10 - 60

Time to generate a test driver derived from the total test duration

(col. 1 in Tab. 5-6) and the number of suggested TC (col. 5).

The time to create the source code is significantly smaller and is in

the range of a few seconds only.

Generation of png-

files
~1860

8163 png-files for documentation (in preview and full size, 16326

in total) to document structural coverage of 1530 functions (per

function and every filtered TC, i.e. differential structural coverage

for every test driver)

Test report

~5400
~1½ hour for all supported evaluation facilities, 84 files and 1530

functions under test

130 2 files, 21 functions

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
40

Performance (1530 Functions)

#Injected

Stimuli

per FUT

Injected Stimuli

in total

Duration

/ h
Comment

700 1 Mio. 17

without target execution

1200 1.8 Mio 26

5000 7.6 Mio 41

13500 20.5 Mio 88

18000 27.8 Mio 129

700 1 Mio. 32
with target execution

index checking and basic path coverage

Host:

i5-2400@3.1GHz

4 GB RAM

Windows7

Target:

Pentium4@3GHz

3 GB RAM

Linux 2.6

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
41

Coverage
Configuration Dependency

Ordered by number of requested stimuli per function

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
42

Coverage, Summary

Coverage Type
Coverage / %

Commentmerged

1 – 13

merged

1-18

merged

14-18

best of

1 – 13

best of

14 – 18

Block 80.4 82.6 79.4 73.5 77.2

MC/DC

true OR false 84.8 86.6 84.7 79.7 82.6
At least one of the boolean

values occurred

true AND false 67.8 70.4 62.4 not available not available
Both boolean values

occurred

Configuration
300-n-n-

n-y

3000-y-

y0-y-y

Runs 1 – 13 : no combination of fault injection modes “invalid stimuli” and “modified return”

Runs 14 – 18: combination of “invalid stimuli” and “modified return” at varying number of stimuli

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
43

Robustness
Sensitivity on Invalid Values

This figure shows that invalid input (*-n-n-y-n) and invalid output (*-n-n-n-y) may cause problems.

Therefore confirmation is required that such values will not occur during system operations

Memory corruption (corruption of tables): *-y-*-n-n or *-*-y-n-n or *-*-y0-n-n

“valid”

invIn

invOut

memCorr

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
44

Host – Target Comparison

◼ Types of comparison

❖ general statistics on host and target execution

❖ comparison of output vectors observed – expected on host and target

expected values should be the confirmed reference vectors

confirmation not a matter in the project

❖ comparison of changes of parameters before and after test on host and target

depending on parameter mode IN, OUT, INOUT, RETURN

❖ comparison of results host vs. target

◼ How are comparisons performed?

❖ comparisons are done automatically

❖ built-in code as part of the generated test environment, for every user-defined type

❖ results are printed to a log-file

❖ evaluation of the log-file contents for the test report

❖ diversification of evaluation algorithms to support correctness checks

◼ Types of comparison

❖ general statistics on host and target execution

❖ comparison of output vectors observed – expected on host and target

expected values should be the confirmed reference vectors

confirmation not a matter in the project

❖ comparison of changes of parameters before and after test on host and target

depending on parameter mode IN, OUT, INOUT, RETURN

❖ comparison of results host vs. target

◼ How are comparisons performed?

❖ comparisons are done automatically

❖ built-in code as part of the generated test environment, for every user-defined type

❖ results are printed to a log-file

❖ evaluation of the log-file contents for the test report

❖ diversification of evaluation algorithms to support correctness checks

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
45

Host – Target Execution
Global Figures

Subject Native Host Target

#Tests started 1530 1511 1488

#Tests completed 1529 1504 1186

#Tests not launched on

target
n/a n/a 1

#Tests killed on target

due to timeout
n/a n/a 59

#TC generated 4014 n/a n/a

#TC executed n/a 3972 3341

not all test drivers could be compiled and linked due to anomalies

not all test drivers could be compiled and linked for target

not all test drivers could complete

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
46

Host – Target Comparison
Input – Output, summary

Plat

form

#Test

Drvs.

#Parameters #Fully Identical Parameters

Total IN OUT INOUT RET Total IN OUT INOUT RET

Host
3972 8336 5815 0 1627 894 6491 5813

99.97%

0 581

35.71%

97

10.85%

Target
3341 6845 4645 0 1482 718 5623 4644

99.98%

0 637

42.98%

342

47.63%

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
47

Host – Target Comparison
Input – Output, detailed

File Function
Test

ID

Parameter

Name

Parame

ter Type

#Eleme

nts

#TC

total

#TC

#Identical
#Partly

different
#Different

H T H T H T

..\appl_main.c Func1 0 Para1 IN 1 1 1 - 0 - 0 -

..\file1.c Func2 1
Para2 IN 61

2
2 2 0 0 0 0

Para3 INOUT 1 0 0 0 0 2 2

..\file1.c Func3 2
Para4 IN 61

6
6 6 0 0 0 0

Para5 INOUT 1 0 0 0 0 6 6

..\file1.c Func4 3
Para6 INOUT 39

4
0 0 4 4 0 0

Para7 INOUT 9 0 0 0 0 4 4

..\file1.c Func5 4 Para8 INOUT 51 1 0 0 1 1 0 0

..\file1.c Func6 5 Para9 INOUT 161 1 0 0 0 0 1 1

..\file1.c Func7 6 Para10 INOUT 61 1 0 0 0 0 1 1

..\file1.c Func8 7 Para11 INOUT 1 1 0 0 0 0 1 1

..\file1.c Func9 8 Para12 IN 1 4 4 4 0 0 0 0

..\file1.c Func10 9 Para13 INOUT 1 1 0 0 0 0 1 1

..\file1.c Func11 10
Para14 INOUT 36

1
0 0 0 0 1 1

Para15 INOUT 1 0 0 0 0 1 1

BSSE System and Software Engineering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2013 Assessment and Evaluation of Fully Automated Source-code-based Testing Strategies,

Final Presentation, ESA Contract No. 4000102645
48

Host – Target Comparison
Expected – Observed, summary

Result

Type

Plat

form

Parameter Mode

IN OUT INOUT RETURN Total

% # % # % # % # %

identical

host 2855751 37.09 0 0.00 1664818 21.62 3173639 41.22 7694208 99.93

target 145033 44.14 0 0.00 167814 51.07 12635 3.85 325482 99.05

different

host 16 0.00 0 0.00 2051 0.03 3565 0.05 5632 0.07

target 135 0.04 0 0.00 2755 0.84 221 0.07 3111 0.95

total

host 2855767 37.09 0 0.00 1666869 21.65 3177204 41.26 7699840 100.00

target 145168 44.18 0 0.00 170569 51.91 12856 3.91 328593 100.00

host.lgExecDCRTT18:175: check_double_DCRTT -0.000000!=0.000000

diff=1.04569253121074490000e-309

