
Fault Identification Strategies

R.Gerlich, R.Gerlich (BSSE)

C. Dietrich (DLR)

DASIA’09

26.-29.05.2009, Istanbul, Turkey

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 All Rights Reserved DASIA’09, Fault Identification Strategies 1

Dr. Rainer Gerlich Tel. +49/7545/91.12.58
Auf dem Ruhbühl 181 Fax +49/7545/91.12.40
88090 Immenstaad Mobil +49/171/80.20.659
Germany email Rainer.Gerlich@bsse.biz

Overview

� Fault Identification

� Fault Activation

Identification Assessments

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 2

� Identification Assessments

� Conclusions

Goals

• Which methods should be applied?

• What is the optimum strategy to minimise the effort and the
remaining faults, incl. dormant faults?

Static + dynamic analysis

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 3

• fault types

• anticipated and non-anticipated faults

• activation conditions of run-time faults
data, events, resources, platform, context

• theory vs. practice

Sensitivity of methods and tools

Goals

• broad stimulation

• robustness evaluation

• fault injection

• effectiveness of symptom-based fault monitoring

• applied to software after completion of required tests, V&V

Contribution from fully automated auto-testing
(starting with stimulation)

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 4

• applied to software after completion of required tests, V&V

• activation conditions (Ada, C)

• fault types vs. methods and tools (C)

• fault coverage vs. tools (C)

• statistics on stimuli and test cases (C)

Practical results

Fault Terminology

fault error failure

occurred

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 5

activated

dormant

detected

occurred array[j] index j is out-of -range

activated array [j] ≠≠≠≠ specified value result is different from what is expected

dormant array [j] = specified value result does comply with specified value

detected array [j] ≠≠≠≠ specified value non-compliance is observed

no risk within overall scope
but may change by maintenance

recurring verification effort!

E4:
int callee(int i, int j)
{

int arr[500];

return arr[i+j];
}

void caller()
{

int i=5,j=7,k;

k=callee(i,j);
}

Risk Assessment

E1:
int arr[500];

k=arr[5+7];
no risk at all
provided index < array size

no risk

E2:
const int i=5,j=7;
int arr [500]; }

unknown risk
possibly fault propagation

E3:
int myFunc(int i, int j)
{

int arr[500];

return arr[i+j];
}

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 6

no risk (?)
depends on fault handling

but fault detection possible
if arr[m]≥ 0 ∀ m∈ [0,499]

E3.1:
#define ERROR -1
int myFunc(int i, int j)
{

int k,arr[500];

k=i+j;
if (k<0 || k>499)

k=ERROR;
else

k=arr[i+j];

return k;
}

no risk
but data corruption possible (i,j)

int arr [500];

k=arr[i+j];

Activation Conditions

Activation Conditions

Depend. Abbr Example Comment Identif. Strategy

Input IDF

int arr[500];

int myFunc(int i, int j)

{ return arr[i+j]; }

depends on what comes in
range checking
exception monitoring

Platform PDF
register short a=20000,b=2000,c;
c=a * b;
if (c>10){ } else { }

on a RISC architecture it will not be
activated: register size is 32 bit
on 16 bit: c<0, possibly overflow

platform diversif.
coverage analysis
symbolic execution

Context CDF

const char cstr[]=”123”;
typedef enum {false,true} Boolean;
void func() {

char var[3]; Boolean bool;
strcpy (var,cstr); }

activation may depend on platform /
PDF (little-big endian)

platform
diversification
context change
size check

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 7

strcpy (var,cstr); }

Resource RDF
char *str;
str =malloc(100);
*str=0;

malloc will return NULL when it
lacks memory

fault injection
symbolic execution ?

Event EDF

void def_handler(int err_code) {
switch(err_code) {

default: err_handler(err_code); } }

void err_handler(int err_code) {
switch(err_code) {

default: def_handler(err_code); } }

when a fault occurs with unknown
id, recursion will occur.

fault injection
symbolic execution

Combinat. combinations of dependencies

Independ. -
errCode=SUCCESS; // TEST !!!!
if (errCode==ERROR) will always occur

coverage analysis
symbolic execution
dataflow analysis

Fault Identification Strategies

Fault Identification Strategy Fault Manifestation

Syntactic Analysis
error or warning message, compilation abort

Semantic Analysis

Dataflow Analysis warning message

Symbolic Execution error or warning message

Stimulation parameter + data

message-based
no platform-impact

symptom -based

anticipated faults only

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 8

Stimulation parameter + data

exception, abort, lockStimulation
+

Fault Injection

parameter + data

return values

Range Checks
DCRTT msg.

Checks on memory corruption

Platform diversification exceptions, compiler messages, DCRTT msg.

Coverage
coverage figures<100% and red-coloured parts in graphics
(DCRTT), branching ratios / statistics

symptom -based
platform impact

anticipated
+

non-anticipated faults

Pre-Run-Time Detection

Fault Ident. Activation or Detection Fault Manifestati on
Source of Fault

(non-exhaustive list)

Syntactic Analysis

Code analysis based on
syntactic rules. Rules may
extend beyond normal
language syntax scope.

error or warning, compilation abort

syntax error, multiple data
declaration
= instead of == in condition, which
usually is not a syntax error

Semantic Analysis

Code analysis based on local
semantic consistency rules.
Rules may extend beyond
normal language semantic
scope.

error or warning message,
compilation abort

assignment to constant field
invalid types in assignment
missing variable declaration
inconsistent interfaces inconsistent
declarations
types too small/big for used range

Code analysis detecting

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 9

Dataflow Analysis

Code analysis detecting
relations between definitions
of data items and their
reached uses. Can be
combined with constant value
propagation.

warning message

unused assignment
missing initialisation/assignment
use of wrong source/target
variables

Symbolic Execution

State transition equations are
constructed based on control
flow. Presence and/or
absence of some types of
faults can be deduced for
some or all possible states.

error or warning message

out-of-range
dead code
critical casts
de-referenced NULL pointer
numerical exceptions
memory access outside allocated
range
memory leak

Run-Time and Post-Run-Time Manifestation

Fault Ident. Activation or Detection Fault Manifestati on Source of Fault
(non-exhaustive list)

Stimulation
variation of parameter and heap
data within valid range only

exception, abort, lock

uninitialized data
deadlocks and livelocks
out-of-range
critical casts
de-referenced NULL pointer
numerical exceptions

Stimulation
+

Fault Injection

variation of parameter und heap-
Data within valid and invalid range

exception, abort, lock
missing protection against invalid data (out-of-range)
faults in fault handling code

corruption of return values exception, abort, lock

missing protection against invalid data (out-of-range)
missing check on returned NULL-pointer
critical casts
out-of-range

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 10

out-of-range
faults in fault handling code
missing protection against fault propagation

Range Checks
type range monitoring
specific DCRTT support

DCRTT msg. out-of-range

Checks on
memory

corruption

Check on corruption of mallocated
memory
specific DCRTT support

DCRTT msg.
change of data outside the portion of allocated
memory

Platform
diversification

variation of OS, processor,
compiler or memory allocation
specific DCRTT support

exceptions,
compiler messages,

DCRTT msg.

unused variables
uninitialized data
data corruption without raising an exception
unsupported exceptions (like suppressed FPE)

Coverage

Analysis of identified functions
with coverage<100% and manual
analysis of function code
specific DCRTT support

coverage figures<100%
and red-coloured parts in

graphics (DCRTT)

dead code
faults in logical expressions, undetected by pre-run-
time tools

Method and Tool Assessment

Example Identification Strategy Scope

Identification
Reliability

theory observ.

#define FILE_PATH "disk:/dir/"
if (FILE_PATH == NULL) { }
else { }

Coverage Analysis FUT sure yes

Semantic Analysis /
Constant Propagation

unit sure no �

ret_value =SUCCESS; //TEST!! Coverage Analysis FUT sure yes

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 11

ret_value =SUCCESS; //TEST!!
if(ret_value == ERROR)
{ // then-branch }
else
{ // else-branch }

Dataflow Analysis /
Constant Propagation unit sure no �

Symbolic Execution calls sure ?

long size,*getSize = NULL;
if (readBuf(fd,offset,(void*)getSize,

sizeof(long))== ERROR)
{ … }

else{ size=*getSize;}

RT anomaly + Fault Inj. FUT
high /
CDF +
PDF

yes

Dataflow Analysis /
Constant Propagation

unit sure no �

Symbolic Execution calls sure ?

Source Code and Analysis Tools

Lang. Cat. K Lines KLOC Functions

Ada A 71 18 808

Ada C 900 430 5500

C C 48 40 765 ⇐ results presented in detail

Figures represent snapshot,
but qualitative conclusions
remain valid in general

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 12

Tool

Method

Static Analysis
Dynamic Analysis

Auto-Testing

syntax semantic dataflow
symbolic
execution

anomaly
monitoring

coverage
evaluation

static

gcc compiler ×××× ×××× ××××
gcc linker ××××
Cantata++ ×××× ××××

theoretically ××××
dynamic / test
auto-testing

DCRTT ×××× ×××× ××××

Source Code and Analysis Tools

Lang. Cat. K Lines KLOC Functions

Ada A 71 18 808

Ada C 900 430 5500

C C 48 40 765

Tool

Method

Static Analysis
Dynamic Analysis

Auto-Testing

syntax semantic dataflow
symbolic
execution

anomaly
monitoring

coverage
evaluation

static

gcc compiler ×××× ×××× ××××
gcc linker ××××
Cantata++ ×××× ××××

⇐ results presented in detail

Figures represent snapshot,
but qualitative conclusions
remain valid in general

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 13

theoretically ××××
dynamic / test
auto-testing

DCRTT ×××× ×××× ××××

Analysis Method Faults Covered, abs. Faults Covered, %

static analysis incl. DCRTT,only 192 61,2

dynamic analysis, only 44 14,0

both 78 24,8

total 314 100

Analysis Method Faults Covered, abs. Faults Covered, %

classical static analysis, only 81 25,8

DCRTT, only 155 49,4

both 78 24,8

total 314 100

Source Code and Analysis Tools

Figures represent snapshot, but qualitative conclusions remain valid in general

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 14

Faults were identified after operation of software in space

Test Coverage and Filtering

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 15

Fault Coverage vs. Methods and Tools
Figures represent snapshot,
but qualitative conclusions
remain valid in general

contribution
faults: 111 41-45 3-77 155

contribution
from
classical static
analysis
excl. symbolic
execution

faults: 3-4 152 4-9 84-105 159

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies

16

contribution
from DCRTT

contribution
from all
strategies
excl. symbolic
execution

faults: 3-4 263 4-9 84-105 41-45 3-77 314

Fault Type Coverage vs. Methods and Tools
Figures represent snapshot,
but qualitative conclusions
remain valid in general

contribution
from
classical static
analysis

fault 2-3 18 2-6 20-30 22
types

contribution
fault 7 19-21 2-10 28
types

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies

17

contribution
from DCRTT

types

contribution
from all
strategies
w/o symbolic
execution

fault 2-3 25 2-6 20-30 19-21 2-10 48
types

Fault Coverage vs. Methods and Tools

Total faults 314
Static Analysis Dynamic Analysis

Syntax Semantic Dataflow Symbolic
Execution

Detection Method Stimulation Method
Anomaly Coverage Data Platform

faults covered by
classical static

analysis methods

abs, min 3 152 4 84
abs, max 4 152 9 105

%, min 0,96 48,41 1,27 26,75
%, max 1,27 48,41 2,87 33,44

faults covered by
DCRTT

abs, min 111 41 3 27 1
abs, max 111 45 77 27 1

%, min 35,35 13,06 0,96
%, max 35,35 14,33 24,52

faults covered in
total

abs, min 3 263 4 84 41 3 27 1
abs, max 4 263 9 105 45 77 27 1

%, min 0,96 83,76 1,27 26,75 13,06 0,96
%, max 1,27 83,76 2,87 33,44 14,33 24,52

Figures represent snapshot,
but qualitative conclusions
remain valid in general

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 18

%, max 1,27 83,76 2,87 33,44 14,33 24,52

Total fault types 48
Static Analysis Dynamic Analysis

Syntax Semantic Dataflow Symbolic
Execution

Detection Method Stimulation Method
Anomaly Coverage Data Platform

fault types
covered

classical static
analysis methods

abs, min 2 18 2 20
abs, max 3 18 6 30

%, min 4,17 37,5 4,17 41,67
%, max 6,25 37,5 12,5 62,5

fault types
covered by

DCRTT

abs, min 7 19 2 9 1
abs, max 7 21 10 9 1

%, min 14,58 39,58 4,17
%, max 14,58 42,86 20,83

fault types
covered in total

abs, min 2 25 2 20 19 2 9 1
abs, max 3 25 6 30 21 10 9 1

%, min 4,17 52,08 4,17 41,67 39,58 4,17
%, max 6,25 51,02 12,5 62,5 42,86 20,83

Fault Coverage Summary

These 44 faults identified by auto-testing
cannot be covered by other strategies at all.

But auto-testing could cover 122 faults.
The difference of 78 faults is
not allocated here, as static
analysis strategies may be
more efficient to identifiy the
sources due to messages
pointing directly to the
location in the source code.

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 19

Fault Coverage Summary

Faults Detected with DCRTT Dynamic Analysis Only

Symptom-based
Fault Identification Method

Applied at # Faults %

Recording of exceptions, aborts, deadlocks,
livelocks and specific DCRTT run-time checks

run-time 13 29,55

As above + fault injection run-time 27 61,36

As above + platform diversification run-time 1 2,27

Coverage analysis post-run-time 3 6,82

Total 44 100

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 20

Item
Identification Strategy

Total
static

dynamic
min max

faults abs. with DCRTT 270 44 122 314
without 159 0 0 159

faults % with 86.0 14.0 74.2 100.0
without 50.6

faults/ KLOC with 6.8 1.1 5.8 7.9
without 4.0 0.0 0.0 4.0

Statistical Figures

Some Statistics

Test case filtering 1 : 1000
this ratio is representative for the mapping of samples in the
input domain onto equivalence classes

Test cases per function 7 average, estimated for full coverage

LOC per test case 8 average, estimated for full coverage

Overall number of test cases 5,000

to achieve full coverage

FMECA may still be applied to select test cases which need to
be verified against the technical or functional specification,

then the benefit still is that all code has been executed and

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 21

then the benefit still is that all code has been executed and
checked on robustness

Estimated manual effort per
test case

(very conservative)

1 man-hour
for identification of test case, test preparation and execution,

verification of output vs. input and specification is not included,
seems to underestimate the real effort

Estimated savings due to
automation from stimulation
to evaluation and filtering

2 man-years

300 k€

conservative estimate: per 40 KB of C code and assumption of

1 LOC/man-hour ⇒ 40,000 man-hours ⇒ 25 man-years

⇒10% savings of total costs (2 instead of 25),

savings probably higher

Conclusions

• raises significantly the identification probability of

• faults in fault handlers due to fault injection

• sporadic faults due to broad stimulation addressing exotic cases

• auto-identification of test cases by criteria, generation of test drivers

• symptom-based analysis covers non-anticipated faults

• application-independent criteria to identify application-dependent faults
without oracle coverage, statistics on code execution

Auto-testing

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 22

without oracle coverage, statistics on code execution

• symptom-based identification turns out as feasible and efficient

• coverage of a fault type may depend on practical implementation and
limitations

• anticipated faults + high tool complexity vs. non-anticipated faults + low
complexity

• potential difference between theory and practice regarding fault coverages

Sensitivity of Methods and Tools

Conclusions

• none of the current methods and tools can cover all fault types

• give preference to static analysis,then apply dynamic analysis /
testing

• do vary conditions (platform, context, fault injection, broad
stimulation)

Fault Identification Strategy

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 23

• diversification strongly recommended,especially for critical software

• for proof of correctness (per test case), the intended or an
equivalent platform is needed

• for identification of faults everything is allowed what helps to activate
and detect a fault

Recommendation

Conclusions

• each strategy allows only specific conclusions with limited scope

Sensitivity of Fault Identification

© Dr. Rainer Gerlich BSSE System and Software Engineering, 2009 AllRights Reserved DASIA’09, Fault Identification Strategies 24

• each strategy allows only specific conclusions with limited scope
regarding fault found and not found

• faults expected to be found theoretically, may not be found in
practice

• practical evaluation needed on the sensitivity of methods and tools

