Lecture Notesin Computer Science 1

An Implementation and Verification Technique for
Distributed Systems

Rainer Gerlich

BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
D-88090 Immenstaad, Germany
gerlich@-online.de

Abstract. The technique , 1SG* (Instantaneous System and Software Genera-
tion“)! combines implementation, verification and validiation of software by a
coherent and automated development process. No human intervention is re-
quired between delivery of high-level system engineering information and
reading of the evaluation report as produced by the automatically generated and
executed software system. The automation is based on standardisation, organi-
sation and rigorous formalisation of all the development stages. Consequently,
the productivity is increased by about one to two orders of magnitudes when
ISG is applied. A feedback is available within a range of minutes to an hour
depending on the size of the system. Verification and validation of a system is
significantly eased by excluding the engineer from errorprone development ac-
tivities, by applying forma checks, by combining system specification and
generation, and by providing detailed reporting capabilities. Although stan-
dards are applied, the ISG approach can fully cover the application area of dis-
tributed and/or real-time systems.

1 Introduction

Reasonable effort has been spent in the past to improve the software development
process by methods and tools. However, all of the known approaches address only
one or afew of the facettes of software development. This results in a partial optimi-
sation only and neither does it speed up significantly the development process nor
doesit solve all of the problems related to verification and validation. Hence, most of
the activities related to software development still need to be done manually, although
anumber of tools are on the market.

1 Theideasand implementation details related to I SG are property of Dr. Rainer Gerlich BSSE
System and Software Engineering. They are protected by international copyright 00 1999 -
2000.All rights reserved

Lecture Notesin Computer Science 2

2. Survey on State-Of-The-Art and Its Evolution

21 Analysisof State-Of-The-Art Approaches

Object-oriented methods (OOM) put emphasis on reusable components. OOMs
have been and still are successfully used to construct loosely-coupled, reusable com-
ponents by applying abstract interfaces and classes. But classes are not sufficient to
support a broad range of applications because structural differences, which may occur
for even the same application type, cannot be covered in a simple manner which al-
lows for complete automation. Human intervention is still required which is expen-
sive and may introduce errors into the only partially reused components.

The ,Unified Modelling Language* (UML) [1] aims to provide a general concept
for software development based on object-oriented ideas. It mainly addresses the
generation process and nearly spares the verification and validation process. But
UML still recommends manual execution of the various activities needed for software
development, as suggested e.g. by ,,deployment diagrams®, and does not encourage a
software engineer to more efficient approaches of software production based on
automation.

Tools like Teamwork [2], Statemate [3], StP [4], ObjectGEODE [5], SDT [6] (this
is a non-exhaustive list) concentrate more on the visualisation of the engineer’s ideas
and still remain on the informal level, but do not necessarily guide him towards a
feasible and efficient solution. Therefore a number of serious problems usually come
up during the coding, testing and integration phases, i.e. during phases which are not
(well) supported by such tools. It is a well-known fact that a large number of soft-
ware projects fail, overdraw the budget and the schedule, because the problems were
not identified early enough. Usually, problems related to performance, resources and
system integration are underestimated and not well identifed during early develop-
ment phases.

Performance analysis tools, such as SES/workbench [7] or OPNET [8] are very
helpful to identify bottlenecks early enough. But they increase the overall effort,
while their code does not directly contribute to the target implementation. It seems
that such tools are mainly applied when performance is considered as a high risk for a
project. Actually, their usage is not well accepted by software engineers and they are
usually not recommended by standards asit istrue for UML.

The role of verification and validation (V&V) in the lifecycle is treated very
poorly so far. During the first phases priority is given to expression and visualisation
of ideason aninformal level, but not to V&V. Even in the V-model the validation of
the software system is planned only at the end of the lifecycle, when corrective ac-
tions are rather expensive or impossible.

Tools like ObjectGEODE, SDT and Statemate/Rhapsody encourage engineers to
simulate a system-under-development already at an early stage, but they do not sup-
port a coherent transition from the simulation prototype to the final target version.
Also, they only concentrate on behaviour, but they do not support timing and per-
formance analysis very well. ObjectGEODE and SDT support code generation for

Lecture Notesin Computer Science 3

real-time applications, but they do not support the verification and validation of the
real-time properties like meeting deadlines.

Regarding verification a number of formal approaches are known like B [9], Z
[10], RAISE [11], VDM [12] for algorithmic verification (also known as , formal
methods"), and SDL [13] and Statecharts [14] for behavioural verification (so-called
»Semi-formal methods"), represented by ObjectGEOD and SDT which were already
mentioned above.

Due to their complex mathematical notation the ,formal methods* are not widely
applied so far. Also, a potential disadvantage is that a user needs to ask for whether a
property is fulfilled or not, the tools themselves do not inform automatically about
problems. Hence, a problem which is not known in advance may still remain hidden.

ObjectGEODE, SDT (based on SDL) and Statemate (based on StateCharts) take a
mathematical approach to verify the correctness and completeness of a system’'s
behaviour. So SDL has been successfully applied to protocol validation.

However, when applying the verification procedures to practical systems including
anumber of components with non-trivial behaviour, they fail in practical cases due to
state explosion [15, 16]. Filtering techniques which are often applied to reduce the
system’s state space to be explored are helpful to understand what is going on in
certain parts of the system, but they are not adequate for system verification and vali-
dation. Problems related to interdependencies may not be identified this way.

One reason why state explosion occurs is related to the purely mathematically-
oriented verification approach based on the exploration of al possible combinations
of states and data, and limited or missing capabilities (more adequate than filtering) to
exclude what will not occur in practice. Focusing on the relevant states is needed
similar e.g. by data Flow Analysis‘, an optimisation technique which is already ap-
plied in the area of compiler design, or by a formal prove which does not require
exploration of the full state space.

ROOM [17], a method for Real-time Object-Oriented Modelling, and the related
tool ObjectTime [18] address early validation of distributed systems, but also mainly
concentrate on system decomposition, interfaces and the behavioural aspects, while
timing and performance problems are left unsolved.

Synchronous languages, such as Lustre [19] and related tools such as Scade [20]
simplify the verification problem by making rigorous assumptions on the timing and
order of execution, so that verification can succeed in case of synchronous systems.
The verification scheme can also be applied to distributed control systems [21], but
not to other types of systems.

To summarise: a large number of methods and tools exist which provide good
support for the application area and the lifecycle phase they have been built for. But
they al lack features which are needed to make software development significantly
more efficient and less risky. They do neither cover the full lifecycle nor every aspect
which has an impact on the success of software development. As each method and
tool provides a very specific solution only within alimited domain, an overall optimi-
sation cannot be achieved by combining such methods and tools.

This does not mean that the methods and tools are not useful a priori. What is dis-
cussed here is their contribution to an optimised software development process, and

Lecture Notesin Computer Science 4

from this perspective a number of problems have been identified. Each of the men-
tioned tools has contributed to improve software development, but so far an overall
optimisation could not be achieved, which alowed a transtion from , handcrafted” to
»industrial“ software development.

1.2 Towardsa Coherent and Automated Approach

In afirst iteration the integration of complementary existing tool towards a more
complete tool environment was considered as a potential solution to the problems
identified above. During the OMBSIM project [22], which was executed for ESA,
ObjectGEODE and SES/workbench were coupled to cover both, behavioural and
performance verification. Although rather successful, some drawbacks were identi-
fied which prevented a broad usage: (1) the needed investment was doubled, a strong
argument against such a solution in case of small or medium-sized projects, (2)
maintenance was difficult because of diverging evolution of both tools, (3) the ob-
served effort reduction only occured for a small percentage of the whole application,
and (4) the chosen appproach increased the state space significantly.

Nevertheless, this approach allowed to experiment, and it was applied to a number
of projects, improving it stepwise. Finaly, as a sdf-standing solution 1SG is now
available, which is a coherent tool environment supporting the features which are
needed to reduce risks and costs and to make software development more efficient by
one to two orders of magnitude for such parts of a system to which it is applied.

By introducing standards [23], by identifying construction rules, and by manually
trying the construction of a system by the standard procedures, the | SG approach was
prototyped, before an automated process model could be defined. Now, ISG com-
pletely automates the generation process and combines system generation with han-
dling of distribution, monitoring and reporting, verification and validation.

Apart from the automation aspect, reasonable effort has been spent to succeed with
verification. Firstly, the problem of system verification has been divided into two
principal steps:

1. verification of behaviour and performance, and
2. verification of functionality and algorithms.

This separation of the verification problem also implies the separation of software
development into two principal parts: the concurrent part related to step (1), aso
dealing with distribution, and the sequential part related to step (2). This approach
eases incremental development, because it decouples the concurrent part from the
seguential part. In consequence, both parts can be refined separately.

Within 1SG the concurrent parts form a framework with drawers into which the se-
guential parts can be plugged-in. This alows independent (pre-)verification of the
sequential code and reduces significantly the system’ s statespace because most of the
data do no longer contribute to the behavioural state space.

Step (1) is based on a formal description of behaviour by Finite State Machines
(FSM) (as known from SDL) together with a formal definition of performance prop-
erties and constraints by aformalised input scheme.

Lecture Notesin Computer Science 5

For step (2) formal methods like the ones already mentioned above may be applied
independently. Also, the usual test means may be used. As another alternative such
software also may be generated and verified from formal inputs provided by da-
tasheets as supported by |SG [24,25].

3. ThelSG Implementation Technique

To break a system down into its components, to describe the data flow and its be-
haviour, ISG follows OOM regarding interfaces and encapsulation, and SDL regard-
ing formal definition of behaviour and data exchange. However, to allow for com-
plete automation and to master state explosion, 1SG introduces new concepts. Regard-
ing efficiency the most important feature is that literals and figures are needed only to
define (major parts of) a distributed / real-time system [24,25]. Even an engineer not
being very familiar e.g. with real-time programming, communication protocols or
programming languages, can easily create a distributed software system which is
executable and immediately delivers afeedback.

The user inputs are mixed with the 1 SG files and both are subject of the generation
process as shown by Fig. 1.

1SG User Inputs
| |
+ .
—_— i
Stimulation Generation, Distribution & Execution
% 15..75min
typically
Automated Generation of
Verification & Validation
Report ¥

Fig. 1. System Synthesis by |SG

Having generated and partitioned the software according to the user directives, the
software is distributed across the network and executed by ISG. A network may con-
sist of a number of heterogeneous platforms, i.e. operating systems (OS) like Solaris,
Linux and VxWorks and processors like Intel and Sparc. To run a certain part of the
system on another platform just three literals of the user input need to be changed
related to the OS, the processor type and the | P network address.

During execution information is collected by 1SG according to the automated in-
strumentation as defined by the user. Such data are evaluated for the verification and
validation (V&V) report.

Lecture Notesin Computer Science 6

Tests can be derived automatically to stimulate the system due to the formal sys-
tem definition. Such tests may cover stress testing and fault injection. The procedure
from delivery of the user inputs until provision of the evaluation report may take
between 15 and 75 minutes depending strongly on the number of process types (about
1..2 minutes each on an UltraSparc 1/143) and dligthly on the other parameters like
states, data inputs, topology and the set of external inputs. The given upper limit of 75
minutes applies to about 40 process types and about 150 external comamnds [24].

More details about the generation process are given by Fig. 2. The user inputs are
divided into three principal parts: (1) the definition of the concurrent and distributed
elements, (2) the configuration options and (3) the sequential code.

The system is defined by means of literals identifiying the processes, the network
and the data flow, and by figures related to timing, scheduling, CPU consumption and
the amount of data. By configuration options implementation features can be selected,
the mapping onto the platforms and the interfaces to the environment are specified,
the degree of instrumentation and reporting and the type of testing are controlled.

The ratio between user-provided inputs and the ISG generated output is in the
range of about 100 (as measured for the MSL project [24]). This indicates the high
saving of effort and time. As little effort is needed only to create a version of a sys-
tem, a number of iterations may be executed to find the optimum implementation.
Having a rough idea only a user may already start creating an executable system, and
then incrementally refine its definition, always getting a feedback from the real sys-
tem.

1SG User Inputs k— |terations
System Definition Configuration Options Sequential
Code
Figures & Literals Directives Algorithms
Rules
Implementation Features Incremental
Files Processes Platform & Environment Source Code Development
Network Instrumentation
DataFlow (Automated) Testing Object Code
Reporting
output : input about 100

1

Automated Generation & Execution

!

Automated Generation of Verification & Validation Report

Fig. 2. System Definition and Generation in More Detail

Fig. 3 shows the software parts and the elements which are needed to build and
verify the complete application. The environment complements the system by com-
ponents which are needed during development and testing. Such components may

Lecture Notesin Computer Science 7

represent hardware or externa interfaces. The test software stimulates the system.
From the ISG point of view there is no difference between the system software, its
environment and the test software. The environmental and test software can be built
by taking the same elements as used for the system software. E.g. the part to handle
external commands is generated automatically and then added to the user inputs [24].

Application Definition

system software
environmental software
automated test software

Literals Figures
processes instances
process types CPU consumption
commands periods, time jitter
states timeout
UDFs deadlines
logical CPUs amount of data
logical channels priorities

Fig. 3. Elements of the Application

The top-level entity to structure a system is the process. A process is derived from
a process type. A process type defines a template for a set of software components
having all the same behavioural and performance properties. Hence, a process is a
physical entity which is derived from a process type by instanciation. It gets an in-
stance number for unique identification.

Processes are communicating by exchange of data (messages in the sense of
OOM). For the data exchange a standard format [21] is used. On reception of a mes-
sage the receiving process needs to know which data have arrived and what to do
with the data. The command which is included in the message provides the required
information. A priority is assigned to a command indicating the urgency of its proc-
ng at the receiver’s site. For analysis of the data traffic the amount of data associ-
ated with an outgoing command has to be given by arange.

A number of states may exist for a process reflecting that a process' reaction may
depend on certain conditions. The states define a ,Finite State Machine* (FSM)
which drives the behaviour of a process. A state transition is an activity which is
executed between an initia state and afinal state. A number of atomic actions may be
associated with such a state transition. Each such action is executed according to the
scheme ,,input (incoming command) - processing - output (outgoing command).

The input is processed by a ,, user-defined function* (UDF) which is a part of the
sequential code plugged into the concurrent skeleton. After processing, usually an-
other command isissued.

A logical CPU is assigned to each instance of a process and the (estimated) con-
sumption of CPU time (in terms of cycles of the logical CPU) needs to be given for
each processing action. For real-time processing figures like periods, timeout values

Lecture Notesin Computer Science 8

and deadlines can be specified. Random jitter can be created for al timing featuresin
order to allow to run the system under realistic and stress conditions.

Processes communicate via logical channels. This allows to hide the properties of
a communication channel during an early phase for which only the principal data
transfer capabilities are required. The exact properties, like the degree of fault toler-
ance, the type of the transfer medium or the bundling of several heterogeneous trans-
fer media, may be introduced later when really needed.

Logical Level
Processl Process2
behaviour dataflow behaviour
functionality |« = functionality
performance performance

Distribution Level

Processors Networ k
CPU bus, ethernet, ISDN
0s TCP/IP, UDP

Fig. 4. 1SG Logical Levels of System Definition

Fig. 4 showsthe two principal levels as used by 1SG to decouple the logical system
level from the physical distribution level. This separation gives high flexibility for
redefinition of the topology or the platforms, because the logical level is not effected
when the distribution is modified, and vice versa the distribution level is not impacted
when process internals or the logical communication channels are changed.

Process Interfaces

Provided Interface Required Interface
Receiver Process Destination Process
Initial State Final State/ Destination State
Incoming Commands Outgoing Commands

Fig. 5. Elements of the Process Intrerfaces

I SG uses an abstract, standardised interface for communication between processes
as shown by Fig. 5:
- the provided interface

and
- therequired interface.

Lecture Notesin Computer Science 9

This notation has been introduced by HOOD [26] for programming with Ada. In
context of 1SG the provided interface is what the receiver makes visible to the exter-
nal world. The required interface is what the sender of the message wants to use. The
formal definition of the two sides of communication allows to perform consistency
checking and to limit the combinations of messages. What is part of arequired inter-
face must appear in the provided interface of the receiver. If not, the system definition
is incomplete, the code is missing.Vice versa, what appears in a provided interface
must be used somewhere in the system, otherwise it represents ,,dead code”. 1SG
checks the user inputs for missing and dead code.
The elements of each interface type are:
- the process
Either the receiving process (provided interface) or the process to which the outgo-
ing command is sent (required interface). A process is identified by the process
type and the instance number
- the state
At the provided interface this is the initial state in which the process receives the
incoming command At the required interface (related to the outgoing command) it
isthe state in which the receiver shall process the input
If the destination process is identical with the receiving process, the destination
state defines the fina state, and a state transition for the receiving process is initi-
ated.
An exception handler has to be provided for each state to be able to process such
commands which are not covered by the current state. Thisis represented by an in-
coming command named EXC<state>.
- the command
At the provided interface this is the incoming command. At the required interface
this is the outgoing command. Each comand is sent by a standard message format.
Consequently, the user inputs define
- the provided interface, i.e. receiving process, initial state, incoming command,
— the UDF (user-defined function) for data processing,
- therequired interface, i.e. the destination process to which the outgoing command
shall be sent and the desired state,
- thelogica communication channel through which the outgoing command shall be
issued, and
— some more figures related to performance as already mentioned.
In addition, directives are available to allow for scheduling, event generation and
monitoring of timing constraints.
As described in more detail by [24,25] | SG reads the user inputs and
— generates the source code for the infrastructure of a distributed / real-time system,
— generates stubs for the UDFs, takes the UDFs as provided by the user or generates
the UDFsiitsdlf,
— optionally instruments the source code to prepare it for monitoring and tracing
- stimulates the system for operational and stress tresting, and fault injection
- distributes the processes across the physical network and executes them (applying
a handshake for synchronisation at system start up)

Lecture Notesin Computer Science 10

— collects the monitoring information and prepares an evaluation report (textual and
graphical information).

ISG generates the source code and everything needed to get an executable system on

Unix platforms (Solaris, Linux), distributes it and evaluates the results. Executables

may be generated for the following platforms: Solaris, Linux and VxXWorks operating

systems and Intel (PC) and Sparc processors in each possible combination.

Each logical CPU is mapped onto one of the possible combinations of OS and
processor type. It is even possible to map logical CPUs, belonging to the same sys-
tem, onto different platforms. The set of currently available platforms may be ex-
tended on request. Only a few OS primitives are needed so that I1SG can easily be
targeted to other operating systems and procerssors.

4. ThelSG Verification and Validation Technique

Regarding verification and validation 1SG addresses behaviour, performance and
functionality and is capable of providing the needed environment and stimuli.

Verification means ,to check if the system is built right*, validation means to
check ,,if the right system is built*. Verification as done by 1SG not only addresses
the system definition, but everything else related to the generation and distribution
process, e.g. updating of data depending on other information.

When ISG accepts al the user inputs, they represent an executable system and 1SG
does the conversion. When the ISG evaluation report does not indicate errors, the
actual version of the system can be considered as verified from a behavioural and
performance point of view. Thisis different from other tools for which acceptance of
user inputs does not imply that correct and immediately executable code can be gen-
erated.

Application
Behaviour Performance Functiondlity|
1SG states timing constraints
e . data flow resource constraints)
Verification exceptions latencies algorithms Complementary
& scheduling topology | Verification Support
Validation
SUppOI't Envi t Formal Methods
nvironmen Synchronous Verification Methods
stimulation | |daﬁa traffic and noiss“ time jitter |

Fig. 6. ISG Support for Verification and Validation

ISG concentrates on verification of the provided and required interfaces and eve-
rything related to that, aiming to achieve full coverage of behaviour and performance

Lecture Notesin Computer Science 11

(Fig. 6). Verification of the UDFs may be done separately by specific test environ-

ments, if needed and appropriate. E.g. if code of a UDF is generated by another tool

like Scade, this code may aready be verified by the test and verification means the
tool provides. However, if UDFs are generated in the context of 1SG using formalised
inputs like in case of [25], then their verification is supported by 1SG as well.

Validation of a system is achieved by analysing the provided information about
data flow, timing, performance, exception handling and comparing it with what is
expected. i.e. by checking if the system - as defined by the engineer - really does what
it ought to do. Hence, validation means to compare between what the engineer be-
lieved and intended to define and what he really defined.

In order to master state explosion 1SG applies a ,,goal-oriented” verification ap-
proach. This means | SG takes a system engineering point of view rather than a purely
mathematical respectively combinatorial one. E.g. in case of SDL the system’s state
space as the product of all the process state spaces needs to be explored which nei-
ther can be exploited in practical cases nor really all are executed by the system dur-
ing normal operation.

From a practical point of view missing the verification goal due to state explosion
is very dissatisfying. In fact, due to alowing a high degree of freedom in system
implementation, verification fails. Therefore | SG takes an alternative approach:

1. It separates behavioural and performance V&V from functional V&V as aready
mentioned.

2. It defines a different goal for V&V which is more related to the system specifica
tion and its automated construction: the system'’s state space corresponds exactly to
what the engineer defined. So no exploration is needed to analyse if it fits with the
specified behaviour or not.

By its construction rules | SG prevents that inconsistent sequences of messages may
occur. Thisis different from an implementation using SDL. For SDL the desired and
non-desired behaviour of a system are specified by Message Sequence Charts (MSC)
[27]. The answer to this specification is the implementation by processes and FSMsin
SDL. Then for verification a (usually) huge state space needs to be exploited by ex-
haustive simulation and a large number of message sequences is generated. Finally,
the specified message sequences are compared with the generated ones. This complex
procedure which needs a lot of computing resources is a consegquence of separation of
specification and implementation.

When they are not related to each other the big task of exploration is required be-
cause each combination of process states needs to be checked. For 1SG specification
and implementation are related by the provided and required interfaces and therefore
an extensive check is not required.

When defining the provided interfaces and connecting them by the required inter-
faces ISG constraints the set of possible messages sequences due to the following
rules:

1. For each outgoing command the state (destination state) must be given in which
the receiving process shall handle it.

2. An exception handler needs to be defined for each of the states which is capable to
handle unexpected inputs.

Lecture Notesin Computer Science 12

Therefore only such sequences are produced which correspond to the system’s defi-
nition. As no forbidden sequences are generated, there is no need to exploit the state
space as spawned by the product of the process' state spaces. It is sufficient to con-
centrate on the process state spaces, only. Hence, the total size is reduced from the
product to the sum of the state spaces.

To exploit the state spaces of the processes | SG identifies
1. the commands sent from the external world to the system which define the

~external required interface”

2. the set of commands which are part of the , provided interfaces’ which define the

»System’sinternal provided interface”.

Now, verification is considered as successful when the required external and the pro-
vided internal interfaces fit together. When is this achieved?

From the user’s (operator’s) point of view the system is accepted when it executes
all the external commands correctly. Looking into the system’s internals, the correct
execution of all external commands should correspond to a full coverage of states and
internal commands. If it is not achieved the system provides more than expected. If it
could not process al the external inputs, then the system’s definition is not complete.

Consequently, the goal of verification in the context of ISG is to achieve compli-
ance between the , external required interface” and the ,system’s internal provided
interface”. This defines a well-known set of test cases to which the system has to be
exposed.

I SG supports mapping of the external commands onto the internal commands. Ex-
ternal commands can be expressed as timed-sequences of internal commands by di-
rectly relating them with the provided interfaces. This way it is impossible that an
external command cannot be processed.

Generic Verification and Validation

combining automated code generation with V&V checks
generic, application-independent checks

Coverage Timing Resource
& Constraints Constraints
timeout -
CPU utilisation < x %
state coverage cycle overrun

e 0
command coveragd deadline exceeded network utilisation <y %

response time < z mg |buffer utilisation exceeded

Fig. 7. Capabilitiesfor Generic Verification

Regarding automation of verification, I1SG inserts into the code generic checks
which are valid for every application. They are providing answers without being
asked for. Thisis a consequence of the ISG approach which combines system defini-
tion and code generation. Fig. 7 gives some examples of such generic checks.

Lecture Notesin Computer Science 13

As ISG knows about the states and the commands, it can check their coverage, re-
port non-covered states and commands, and can automatically conclude if the full
coverage is achieved or not. The essentia point isthat the check can be expressed in a
normalised form and the result of the check isindependent of the application, it isjust
e.g 100%. The same conclusion is valid for the checks of timing constraints and re-
source utilisation.

4. 1SGintheContext of CRISYS

The development of the I|SG approach has been funded in part by the ESPRIT project
EP 25514 CRISY S[28]. It will be used for two exercises in the context of CRISY S:
1. an application related to the back-up power supply of anuclear power plant,
2. amail sorting and distribution application.

In both cases | SG provides the environment, acts as an integration platform for the
synchronous components and provides reporting and eval uation capabilities (Fig. 8).

Application Environment
Specific Code 1SG Modelling
¢ scheduling
synchronous asynchronous synchronoustdi—— time-jitter
source code _}
user-provided H stimulation
source code = UDF l
| SG-provided j
source code [T %
automated
Reporting & V&V

Fig. 8. 1SG and an Application

Application (1) is a distributed control system which only includes synchronous
components. These components are generated by Scade and the code of each compo-
nent is plugged into the 1SG skeleton as a UDF. Verification of the synchronous
components is based on the capabilities of Scade and the theory as described by [21].

Application (2) consists of a number of synchronous components such as motor
drives, light barriers, belts and feeders, and components with asynchronous, event-
driven behaviour such as generation of mail pieces and pattern recognition.

Lecture Notesin Computer Science 14

I SG schedul es the synchronous components and provides independent clocks (with
time jitter) for the distributed synchronous components. The asynchronous compo-
nents of the mail sorting application are defined as | SG processes.

5. Conclusions

An analysis of state-of-the-art techniques has been performed regarding software
development and its verification and validation. It has been pointed out that for sys-
tem verification and validation all features need to be covered aready at an early
development stage: behaviour, performance and functionality. The analysis of meth-
ods and tools showed that only limited support is provided regarding all such features
over the full lifecycle. To overcome this weakness experiments with integration of
existing tools were performed which guided towards a higher degree of automation
and better support of verification and validation right from the beginning of the de-
velopment process. As a current result the ISG toolset provides an efficient solution
for system development by automated system generation and verification.

Having identified the principal problems which make verification difficult, 1SG
applies a verification concept which significantly reduces the state space which needs
to be explored.

Due to automation of the development process | SG can instrument the source code
such that the information as needed for verification can be easily derived in a generic,
application-independent manner.

At the beginning 1SG and its predecessors were used to provide a system’s infra-
structure and to support verification and validation of such parts. When applying 1SG
to the MSL project, it was identified that major parts of UDFs could be automatically
generated as well. This experience will drive the future use and evolution of 1SG to
cover an increasing percentage of a system’s software, because such parts which are
not automatically generated by |SG drive the remaining overall effort.

ISG isin use for the MSL space project planned to fly on the International Space
Station in 2001/2002. This proves the feasibility of the approach regarding complete
automation of the software development process and verification and validation. It
will be applied to two more applications in the area of nuclear power plants and mail
sorting / automation confirming that | SG can be used for awide range of applications.

References

[EnY

. UML, Unified Modelling Language, http://www.rational .com/uml

2. Teamwork, Sterling Software, Corporate Headquarters: 300 Crescent Court, Suite 1200;
Dallas, Texas 75201, http://www.sterling.com

3. Statemate/Rhapsody, i-Logix, Three Riverside Drive, Andover, MA 01810,
info@ilogix.com

4. StP, Software Through Pictures, Aonix Corporate: 5040 Shoreham Place; San Diego, CA

92122, info@aonix.com

Lecture Notesin Computer Science 15

5. ObjectGEODE, Verilog, 52, Avenue Aristide Briand; Bagneux; 92220; France,
verilog@verilog.fr

6. SDT, Telelogic, Headquarters: Box 4128; S-203 12 Mamoe; Sweden. Vising address:
Kungsgatan 6, info@telelogic.se

7. SES/workbench, 4301 Westbank Dr., Bldg. A, Austin, TX 78746 USA, mktg@ses.com

8. OPNET, MIL3 Inc., 3400 International Drive, NW-Washington, DC 20008, USA

9. Abria, J-R.: The B Book - Assigning Programs to Meanings. Cambridge University Press,
August 1996

10.J. Spivey: The Z Notation - A Reference Manual, Prentice Hall, 1989

11.The RAISE Specification Language, The RAISE Language Group, Prentice Hall, 1992

12.Cliff B. Jones: Systematic Software Development Using VDM, Prentice-Hall, 1990

13.1TU Z.100, Specification and Description Language, SDL, Geneve (1989)

14.D. Hardl: Statecharts: A visua formalism for complex systems, Sci. of Comput. Prog., vol
8, (1987) 231-274

15.R.Gerlich:Tuning Development of Distributed Red-Time Systems with SDL and MSC:
Current Experience and Future Issues, A. Cavali, A.Sarma (edt.) SDL'97 Time for Testing,
Elsevier, (1997) 85-100

16.R. Gerlich: Some Hints about How to Reduce Size of State Space when Modelling with
SDL, http://home.t-online.de/home/gerlich

17.B.Sdlic, G. Gullekson, P.T. Ward: Real-Time Object-Oriented Modelling, John Wiley &
Sons (1994)

18.0bjecTime, ObjecTime Limited,; 340 March Road, Suite 200, Kanata, Ontario, Canada
K2K 2E4, sdles@objectime.on.ca

19.N.Habwachs: Lustre Language Reference Manual, V5 (1997)

20.SCADE tool, Verilog, 52, Avenue Aristide Briand; Bagneux; 92220; France

21.P.Caspi, The Quasi-Synchronous Approach to (critical) Distributed Control System Design,
MOVEP 2k

22.0MBSIM (On-Board Mangement System Behavioural Simulation), ESTEC contract no.
10430/93/NL/FM(SC), Final Report Nov. 1995, Noordwijk, The Netherlands

23.R.Gerlich: Organising Incremental, Reusable and Automated Software Development, Euro-
space Symposium DASIA’99 "Data Systems in Aerospace”, May 17-21, 1999, Lisbon,
Portugal ESA SP-447 (1999) 141-148

24.R.Gerlich, M.Birk, U.Brammer, M.Ziegler, K.Lattner: Automated Generation of Real-Time
Software from Datasheet-based Inputs -The Process Model, the Platform and the Feedback
from the MSL Project Activities, Eurospace Symposium DASIA’00 "Data Systems in
Aerospace", May 22-26, 2000, Montreal, Canada, ESA (2000)

25.M.Birk, U.Brammer, M.Ziegler, K.Lattner, R.Gerlich: Software Development for the Mate-
rial Science Laboratory on ISS by Automated Generation of Real-Time Software from Da
tasheet-based I nputs, Eurospace Symposium DASIA’00 "Data Systems in Aerospace”, May
22-26, 2000, Montreal, Canada, ESA (2000)

26.HOOD, Hierarchical Object-Oriented Design Method,
HOOD Reference Manual Rel. 4, ftp://ftp.estec.esa.nl/pub/wm/wme/HOOD/HRMA4.tar.gz

27.1TU Z.120, Message Sequence Charts (MSC), (1993) Helsinki

28.CRISYS (Critical Instrumentation and Control System) ESPRIT project EP 25514 (1997-
2000)

