
Experience with Validation by Simulation, Automated Code Generation and Integration

'DASIA 97'

- Data Systems in Aerospace -

Sevilla, Spain

May 26 - 29, 1997

Rainer Gerlich

BSSE

(Bodan) System and Software Engineering

Auf dem Ruhbuehl 181

D-88090 Immenstaad

Phone: +49/7545/91.12.58

Mobile: +49/171/80.20.659

Fax: +49/7545/91.12.40

e-mail: gerlich@t-online.de

System and Software Engineering

Experience with Validation by Simulation, Automated Code Generation and Integration

Rainer Gerlich

BSSE
(Bodan) System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659
Fax +49/7545/91.12.40

e-mail: gerlich@t-online.de

Abstract: During DASIA'96 the CIVE approach [1]
was presented which is based on a computer-integrated
li fe-cycle starting with system validation right from the
beginning. Such early validation is performed by
simulation considering functionality, behaviour and
performance. The integration of the li fe cycle phases is
achieved by continuous expansion of the simulation
models from specification to design, refinement and
automated code generation from the models.

Keywords: Verification and validation, automated code
generation, simulation, tool and method integration,
SDL, Ada, ObjectGEODE, VxWorks, formal methods,
databases, MMI

1. INTRODUCTION

The CIVE (Computer Integrated Validation
Environment) approach [1] as presented during
DASIA'96 uses a coherent transition between the li fe
cycle phases and applies validation right from the
beginning of development. This has to be supported by
tools to be sufficiently efficient.

To get an early and immediate feedback from the
system-under-development such models are executable
during simulation on host and on target (see also [2])
under conditions which are representative for the final
target system.

SDL [8] is used for formal definition of a system's
behaviour. The ObjectGEODE [9] simulator and its
extension by EaSySim II verify and validate behaviour
and performance. The ObjectGEODE code generator
automatically produces C code from the SDL
representation to interface with a number of (real-time
operating systems) such as UNIX or VxWorks [10] /
80x86 target

During previous ESA/ESTEC projects [3-5] first steps
to an integrated li fe cycle approach [6] were performed
and the tool environment EaSySim (I) was established.

During the last year a new tool environment EaSySim
II1 [7] has been established which overcomes the
weakness of the first version. The existing integration
capabiliti es have been exploited and more consequently
applied. This helped to succeed with validation by
simulation for more complex systems, to extend the
supported application type from embedded to more
general areas including MMI's and databases, and to
integrate Ada software. Also, the procedure for code
generation has been better organised. Now, it is possible
to move from early validation by simulation to the target
system within 15 minutes2.

In the EaSySim (I) environment the code generation
procedure was rather complex and a lot of time was
needed to configure the tool environment for the
simulation and all the code generation branches (Fig. 1).

EaSySim II now provides a procedure which allows to
install the complete EaSySim II and application
environment and to run through simulation, target code
generation and execution within fifteen minutes for a
sample application.

So an engineer can analyse a system by the powerful
means which are available during simulation, such as
capabiliti es for analysis of data flow and verification of
behaviour by exhaustive simulation, and he can already
execute the system on the target during each
development step without loosing too much time for
handling of the transition.

The application defined in SDL/C will be executed after
simulation (1) on the host (Sparc/UNIX platform) and
(2) on a PC bare machine on top of the real-time
operating VxWorks. The executable code for UNIX and
VxWorks is generated on-line during the presentation.

The fast transition between simulation and target makes
computer-integrated validation reasonable and eff icient.
During simulation the data flow, exceptions, formal
correctness of behaviour and performance are analysed.
On the target system the performance results of
simulation can be calibrated.
This way both environments complement each other and
minimise the risk due to the detailed feedback they are
providing.

1 EaSySim II is a tool environment developed by BSSE
based on the experience made during execution of the
OMBSIM pilot application [4] and the follow-on
ESTEC project DDV [5].

2 This will be confirmed by an on-line demo during the
conference

- 1 -

System representation
SDL model

Verification & Validation

ObjectGEODE simulator

Code Generation

UNIX / Linux platform
ObjectGEODE code generator

Traces and MSC's

Message Sequence Charts

(MSC)

Code Generation
target (80x86)
PC / bare machine

ObjectGEODE code generator
WindView View Graphs

15 minutes

Traces

Installation,

&
Execution

Validation

Fig. 1: From Verification &Validation to Code Execution

2. THE 2-DIMENSIONAL LIFE CYCLE System refinement and extension go along with
continuous hardware-software integration on the target
starting with emulation of hardware and ending up with
drivers which connect the final software with the real
hardware.

By performing the transition from simulation to the
target system during each li fe cycle phase rather than
from the beginning to the end of the li fe cycle, the
current "one-dimensional" li fe cycle is extended to a
"two-dimensional" li fe cycle (Fig. 2). It allows during
each phase simulation, code generation and execution on
the target system.

3. VALIDATION BY SIMULATION AND
CODE EXECUTION ON TARGET

Parts of the validation procedure are discussed below for
an embedded system which consists of five components
(Fig. 3): the Data Management System processor (dms),
a sensor and actuator and the bus connecting them all .
EaSySim II injects external commands and stimulates
the system. Data are requested from sensors, processed
by the DMS processor, which in turn sends commands
to the actuators for control of the spacecraft.Target SystemHost System

Target CodeSimulation

Specification

Design

Final System

Platform

Phases
Life Cycle

Hardware-
Software
Integration

RSIM

Resource, Sceanrio & Interface Mgt.

DMS Processor

Bus

Devices

Sensor Actuator

Telemetry
Operational

and
Test

Commands

Sensor Data
&

Actuator Cmds.

Sensor Data
&

Actuator Cmds.

Fig. 3: DMS Example

The ObjectGEODE
simulator produces
Message Sequence
Charts by which the
data exchange
between system
components is
visualised graphically
(Fig. 4). This feature
allows a human being
to check the logical
flow of data. A
(simpli fied) MSC can
be generated from the
target code, too
(UNIX or real-time
operating system). In
case of VxWorks a
graphical view of task
execution can be
obtained as shown by

Fig. 2: The 2-dimensional Life Cycle

Hence, the second dimension allows to evaluate already
at the beginning what is available in the conventional (1-
dimensional) li fe cycle only at the end and to
continuously check during development if one is still on
the right way.
The generated code converges from an early,
representative version towards the final version at the
end of the project. Specification and design are always
executable, they are validated by simulation and by
execution on the target system at each step of
refinement. Fig. 5. By these means the system under development

can be well monitored during the life cycle.

- 2 -

Fig. 4: Generated MSC (Simulation)

Fig.5: Recording of Target System Execution

- 3 -

The performance analysis capabiliti es of EaSySim II are
made visible by the MSC of Fig. 4: Each message
exchanged between the components, e.g. a sensor data
request (sensrequ, line 8 from top) includes two time
stamps at the end of the data record: a time stamp
indicating when an activity like a sensor data request
was initiated, and another time stamp which gives the
actual time when the message leaves a component.

physical boundaries of computer resources may be
reached3. In such a case this capabilit y is lost because
the proof of correctness is not possible due to exhausted
computer resources.

Hence, the goal of an engineer must be to monitor his
SDL system carefully and to introduce the right means -
as soon as needed - so that the computer resources will
not be exceeded.

A sensor data request is initiated at t=1334 in the DMS
component (message line 8, Fig. 4). It enters the bus and
leaves it at t=1398 after a delay of 64 time units. It
enters the sensor component and leaves it at t=1415
after a processing delay of 17 time units. Finally, the
data arrive at t=1543 in the DMS component (line 11)
yielding a data acquisition time of ∆t=145 time units.

Other formal methods like B [11] or Z [12] are targeted
for another type of applications: sequential
programming and algorithms. Such tools may also not
give the performance and provide results as expected
when they are applied outside their dedicated
application domain, e.g. to describe behaviour and to
implement distributed systems.

The experienced reader may recognise that there is a
bug in the implementation of the bus: this bug is
visualised by the time information included in the MSC
traces.

To summarise: each tool has strong and weak points. If
one does not carefully consider such constraints one
may fail in total.

As a system's properties should not be compromised by
a method or tool, appropriate solutions need to be
considered. A reasonable solution is to partition the
problem into smaller pieces corresponding to
independent parts of the system and different application
domains. Then for each such piece the most appropriate
method and tool can be used.

By line 20 a power failure is injected into the sensor
component from EaSySim II driven by an external
command. As such a message does not use the physical
network it is not time-stamped, but includes a stamp as
defined by the engineer. After injection of this fault the
system still behaves normal because the requirement is
that after the first power failure the system shall still be
fully operational. So this MSC expresses this need. This leads to the following approach: hide algorithms

from SDL and apply more appropriate formal methods
and tools. Vice versa, behavioural aspects should be
treated by SDL because it provides the better support.

An MSC can also be used as a specification for the data
flow of the developed code and the ObjectGEODE
simulator searches for such patterns during simulation. It
reports whether the pattern is found or not. Consequently, we get a heterogeneous method and tool

approach and integration of all such dedicated
components for verification and validation of the
complete system is getting a challenging issue. Such an
approach is supported by EaSySim II due to its tailored
communication and integration capabilities.

By Fig. 5 the periodic processing of sensor data and
generation of actuator commands is visualised. The data
flow from the DMS processor (t3) via bus (t6) to the
sensor (t4) and to the actuator (t5). The period is 4 time
units. Sensor data are acquired at the beginning of the
cycle, actuator commands are issued in the middle of the
cycle after 2 time units.

4. EXPERIENCE WITH METHODS AND
TOOLS

The work executed during the ESA/ESTEC projects [3-
5] showed that the EaSyVaDe approach [6] (which is an
outcome of the OMBSIM project [4]) can coherently be
applied over the li fe cycle. However, one strongly needs
to consider that SDL (on which the EaSySim
environment is based) is not a general purpose language.
Its strong point is that it formalises specification of
behaviour. It has been targeted to support protocol
verification. When applying it to more general
application areas certain rules must be followed to
succeed with system verification.
SDL tools do provide the capabilit y for exhaustive
simulation which is very powerful for analysis of a
system's behaviour. But already at low complexity the

3 Filtering techniques which may be applied to master
this problem are not considered as an appropriate means
by which representative validation results can be
achieved. The justification of this position cannot be
given here in detail.

5. TOWARDS AN INTEGRATED,
HETEROGENOUS APPROACH

interfaces based on the integration capabiliti es as
provided by EaSySim II and SDL/ObjectGEODE.

Now, the idea is to combine the strongness of SDL and
its related tools with benefits of methods and tools from
the other application domains as shown by Fig. 6. Such
areas may be: algorithms, human interfaces, databases.

This possibilit y for integration brings the existing
validation capabilities to new application domains.

6. RECOMMENDATIONS

Ada

Data Bases

Tcl/Tk

B / RAISE

SAO+

OthersSDL
EaSySim II

ObjectGEODE

behavioural,
performance,
operational

V&V
functional
verification

code
generation

C Interface

code
generation

transformation

code
integration

interface

Fig. 6: Complementary Verification and Validation

As was explained a synthesis of existing tool
environments is the best way to get optimum support for
development, verification and validation of systems. To
be successful the tools must provide open interfaces for
integration of system parts which are developed in
dedicated environments.

A system's behaviour is the result of decision-making
which coordinates the functional branches. Therefore
such branches need to be integrated into a behavioural
tool environment. SDL as language and ObjectGEODE /
EaSySim II are an example for such an integration
platform.

In such a heterogeneous tool approach EaSySim II
serves as an integration platform allowing to define a
formal behavioural skeleton by SDL into which other
software just can be plugged-in. This concept has
already been applied for simulation and code generation.

To gain advantage from early system validation in top-
down manner the transition from simulation to target
system needs to be eff icient. This requires good
organisation and a tool environment which allows for an
easy and fast transition.

It is reasonable to implement algorithms by other
languages like Ada, C or C++ which provide a richer
type concept. If formal verification and validation are
needed, methods and tools like B [11], Z [12], RAISE
[13] and SAO+ [14] may be applied. Also, links to
database software and GUI builders like Tcl/Tk [15] or
Java [16] may be established.

7. CONCLUSIONS

The capabilit y of SDL and ObjectGEODE / EaSySim II
to immediately move from the verification and
validation environment to the target system (or its early
representation) provides enhanced means to check if and
how close the current development stage is to the user's
expectations. This 2-dimensional li fe cycle allows to
smoothly approach the final system in a controlled
manner from the very beginning.

During the presentation it is demonstrated that external
processes (a Tcl/Tk window) can be started and
accessed from SDL by socket communication.

The code generation capabiliti es, especially the
automated generation of all the code needed for
interprocess communication, simpli fy significantly the
development of distributed systems and help to save
effort.

Via the C interface, which SDL tools like
ObjectGEODE are supporting, the different system parts
can be integrated on code level: either existing code or
code simultaneously developed with other tools.

It has already been demonstrated that SDL operators
may be implemented in Ada and attached to SDL. This
is possible in general for every Ada83 compiler which
supports a C interface or for Ada95 compilers.

The openness of SDL allows to integrate code generated
by other tools and verification environments and to
apply it to a larger application domain. The integrated
code can be used for verification and validation on the
host and on the target. So each of the different methods
and tools can take advantage of the capabiliti es of the
other ones and there is no need to implement in one
environment capabilities which are already available.

Hence, SDL takes over the control (behavioural) part
and reacts to incoming demands in accordance with the
system state (described by Finite State Machines). This
allows to be on the safe side for the decision logic, but
leaves the functional part to the appropriate verification
and validation means. In such a heterogeneous environment SDL will t ake the

part of control logic and decision-making while the
more functional parts will be provided by the other,
complementary tool environments.

Currently an approach is considered for which a
transformation of the interfaces (as defined in SDL)
from left part to right part of Fig. 6 can be automated. In
the opposite direction just the generated code would be
integrated into the SDL environment.

Currently, work is going on to exploit an automated
transformation to another method and environment from
an interface expressed in SDL.

So far, the main application field of SDL was limited.
This will change in future. One of the next BSSE
projects will make use of databases and man-machine

- 5 -

8. REFERENCES [8] ITU, Recommendation Z.100, Specification and
Description Language, SDL, 1989, Geneva. Blue
Book, Vol. X.1, and appendices A, B, C, D, F1,
F2, F3

[1] R. Gerlich: "From CASE to CIVE: A Future
Challenge!", DASIA'96, Data Management
Systems in Aerospace organised by
EUROSPACE, Paris, May 20-24, 1996, Rome,
Italy

[9] ObjectGEODE SDL-Tool, Verilog, 150 rue
Vauquelin, F-31081 Toulouse Cedex, France

[2] J.L. Terraill on: "The benefits of formal
description techniques for space on-board
systems and their integration in an on-board
architecture", DASIA'97 (this conference), Data
Systems in Aerospace, organised by
EUROSPACE, Paris, May 26-29, 1997, Sevill a,
Spain

[10] TORNADO / WindView / VxWorks, WindRiver
Systems, Inc. 1010 Atlantic Avenue, Alameda,
CA 94501-1153, USA

[11a] Abrial, J.-R.: The B Book - Assigning Programs
to Meanings. Cambridge University Press,
August 1996.

[11b] Atelier B, version 2.0, STERIA DIGILOG, BP
16000, F-13791 Aix-en-Provence Cedex 3,
France

[3] HRDMS (Highly Reliable DMS and Simulation),
ESTEC contract no. 9882/92/NL/JG(SC), Final
Report, Oct. 1994, Noordwijk, The Netherlands

[11c] B-Core [UK]: B-Tolkit User's Manual, version
3.2, Magdalen Centre, The Oxford Science Park
(1996)

[4] OMBSIM (On-Board Mangement System
Behavioural Simulation, ESTEC contract no.
10430/93/NL/FM(SC), Final Report Nov. 1995,
Noordwijk, The Netherlands [12] J. Spivey: The Z Notation - A Reference Manual,

Prentice Hall, 1989[5] DDV (DMS Design Validation), ESTEC contract
no. 9558/91/NL/JG(SC), Final Report Dec. 1996,
Noordwijk, The Netherlands

[13] The RAISE Specification Language, The RAISE
Language Group, Prentice Hall, 1992

[6] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan:
EaSyVaDe: Early Validation of System Design
by Behavioural Simulation, ESTEC 3rd
Workshop on "Simulators for European Space
Programmes" Noordwijk, November 15-17, 1994

[14] SAO+, Verilog, 150 rue Vauquelin, F-31081
Toulouse Cedex, France

[15a] J.K.Ousterhout, Tcl and the Tk Toolkit, New
York 1994

[15b] Tcl/Tk Archive:[7] EaSySim II environment, Rainer Gerlich BSSE,
Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany

ftp://wuarchive.wustl.edu/languages/tcl

[16] www-reference: java.sun.com

- 6 -

