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Abstract: During DASIA'96 the CIVE approach [1]
was presented which is based on a computer-integrated
life-cycle starting with system validation right from the
beginning. Such ealy validation is performed by
simulation considering functionality, behaviour and
performance The integration of the life g/cle phasesis
achieved by continuous expansion of the simulation
models from spedficaion to design, refinement and
automated code generation from the models.

To get an ealy and immediate feedbad from the
system-under-development such models are exeautable
during simulation on host and on target (see &so [2])
under conditions which are representative for the fina
target system.

During previous ESA/ESTEC projeds [3-5] first steps
to an integrated life g/cle goproach [6] were performed

and the tool environment EaSySim () was established.

During the last yea a new tool environment EaSySim
11 [7] has been established which overcomes the
weekness of the first version. The eisting integration
cgpahiliti es have been exploited and more cnsequently
applied. This helped to succeal with validation by
simulation for more @mplex systems, to extend the
suppated applicaion type from embedded to more
genera areas including MMI's and databases, and to
integrate Ada software. Also, the procedure for code
generation has been better organised. Now, it is posshble
to move from ealy validation by simulation to the target
system within 15 minutés

So an engineg can analyse asystem by the powerful
means which are available during simulation, such as
cgpabiliti es for analysis of data flow and verificaion of
behaviour by exhaustive simulation, and he ca already
exeatte the system on the target during ead
development step without loosing too much time for
handling of the transition.

1 EasySim 11 is atool environment developed by BSSE
based on the experience made during exeadtion of the
OMBSIM pilot applicaion [4] and the follow-on
ESTEC project DDV [5].

2 This will be cnfirmed by an on-line demo during the
conference
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1 INTRODUCTION

The CIVE (Computer Integrated Validation
Environment) approach [1] as presented during
DASIA'96 uses a wherent transition between the life
cycle phases and applies validation right from the
beginning of development. This has to be suppated by
tools to be sufficiently efficient.

SDL [8] is used for forma definition of a system's
behaviour. The ObjedGEODE [9] simulator and its
extension by EaSySim Il verify and validate behaviour
and performance The ObjedGEODE code generator
automaticadly produces C code from the SDL
representation to interface with a number of (red-time
operating systems) such as UNIX or VxWorks [10] /
80x86 target

In the EaSySim (I) environment the cde generation
procedure was rather complex and a lot of time was
needed to configure the tod environment for the

simulation and all the code generation branches (Fig. 1).

EaSySim Il now provides a procedure which allows to
install the mplete EaSySim 1l and applicaion
environment and to run through simulation, target code
generation and exeaution within fifteen minutes for a
sample application.

The gplicaion defined in SDL/C will be exeauted after
simulation (1) on the host (Sparc/UNIX platform) and
(2) on a PC bare machine on top d the red-time
operating VxWorks. The exeautable code for UNIX and
VxWorks is generated on-line during the presentation.

The fast transition between simulation and target makes
computer-integrated validation reasonable and efficient.
During simulation the data flow, exceptions, formal
corredness of behaviour and performance ae analysed.
On the target system the performance results of
simulation can be calibrated.

Thisway both environments complement eadt other and
minimise the risk due to the detailed feadbad they are
providing.
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Fig. 1: From Verification & Validation to Code Execution

2. THE 2-DIMENSIONAL LIFECYCLE

By performing the transition from simulation to the
target system during ead life g/cle phase rather than
from the beginning to the end o the life g/cle, the
current "one-dimensional” life g/cle is extended to a
"two-dimensiona” life gycle (Fig. 2). It alows during
ead phase simulation, code generation and exeaution on
the target system.
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Fig. 2: The 2-dimensional Life Cycle

Hence, the second dmension all ows to evaluate dready
at the beginningwhat is avail able in the conventional (1-
dimensional) life ocle only at the end and to
continuously chedk during development if one is dill on
the right way.

The generated code @nverges from an ealy,
representative version towards the final version at the
end o the projed. Spedficaion and design are dways
exeautable, they are validated by simulation and by
exeadtion on the target system at ead step of
refinement.

System refinement and extension go aong with
continuous hardware-software integration on the target
starting with emulation of hardware and ending w with
drivers which conned the final software with the red
hardware.

3. VALIDATION BY SIMULATION AND
CODE EXECUTION ON TARGET

Parts of the vali dation procedure ae discussed below for
an embedded system which consists of five components
(Fig. 3): the Data Management System processor (dms),
a sensor and aduator and the bus conneding them all.
EaSySim Il injeds external commands and stimulates
the system. Data ae requested from sensors, processed
by the DMS processor, which in turn sends commands
to the actuators for control of the spacecratft.
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Fig. 3: DMSExample

obtained as gown by
Fig. 5. By these means the system under development
can be well monitored during the life cycle.
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Fig.5: Recording of Target System Execution




The performance analysis cgpabiliti es of EaSySim Il are
made visible by the MSC of Fig. 4. Each message
exchanged between the components, e.g. a sensor data
request (sensrequ, line 8 from top) includes two time
stamps at the end of the data record: a time stamp
indicaing when an adivity like asensor data request
was initiated, and another time stamp which gves the
actual time when the message leaves a component.

A sensor datarequest isinitiated at t=1334in the DMS
component (message line 8, Fig. 4). It enters the bus and
leaves it at t=1398 after a delay of 64 time units. It
enters the sensor component and leaves it at t=1415
after a processng delay of 17 time units. Finaly, the
data arive & t=1543in the DMS component (line 11)
yielding a data acquisition time Af=145 time units.

The eperienced reader may recognise that there is a
bug in the implementation of the bus: this bug is
visualised by the time information included in the MSC
traces.

By line 20 a power failure is injeded into the sensor
component from EaSySim Il driven by an external
command. As sich a message does not use the physicd
network it is not time-stamped, but includes a stamp as
defined by the engineer. After injedion of this fault the
system still behaves normal because the requirement is
that after the first power fail ure the system shall till be
fully operational. So this MSC expresses this need.

An MSC can also be used as a spedficaion for the data
flow of the developed code and the ObjedGEODE
simulator seaches for such patterns during simulation. It
reports whether the pattern is found or not.

By Fig. 5 the periodic processng of sensor data and
generation of aduator commands is visualised. The data
flow from the DMS procesor (t3) via bus (t6) to the
sensor (t4) and to the aduator (t5). The period is 4 time
units. Sensor data ae aquired at the beginning of the
cycle, aduator commands are issued in the middle of the
cycle after 2 time units.

4, EXPERIENCE WITH METHODSAND
TOOLS

The work exeauted during the ESA/ESTEC projeds [3-
5] showed that the EaSyVaDe gproach [6] (which is an
outcome of the OMBSIM projed [4]) can coherently be
applied over the life gycle. However, one strongly needs
to consider that SDL (on which the EaSySim
environment is based) is not a general purpose language.
Its grong point is that it formalises gedficaion of
behaviour. It has been targeted to suppat protocol
verification. When applying it to more general
application areas certain rules must be followed to
succeed with system verification.

SDL toods do povide the capability for exhaustive
simulation which is very powerful for analysis of a
system's behaviour. But already at low complexity the

physicd boundaries of computer resources may be
reated3. In such a cae this cgability is lost becaise
the proof of corrednessis not possble due to exhausted
computer resources.

Hence, the goal of an enginee must be to monitor his
SDL system carefully and to introduce the right means -
as on as nealed - so that the cmputer resources will
not be exceeded.

Other formal methods like B [11] or Z [12] are targeted
for another type of applicaions. sequential
programming and algorithms. Such tools may also not
give the performance and provide results as expeded
when they are gplied outside their dedicaed
application domain, e.g. to describe behaviour and to
implement distributed systems.

To summarise: ead tod has grong and we&k points. If
one does not caefully consider such constraints one
may fail in total.

As a system's properties sould not be cmpromised by
a method o todl, appropriate solutions need to be
considered. A reasonable solution is to pertition the
problem into smaler pieces corresponding to
independent parts of the system and diff erent appli caion
domains. Then for ead such piecethe most appropriate
method and tool can be used.

This leads to the following approach: hide dgorithms
from SDL and apply more gpropriate formal methods
and tools. Vice versa, behavioura aspeds sould be

treated by SDL because it provides the better support.

Consequently, we get a heterogeneous method and todl
approach and integration of all such dedicaed
components for verificaion and validation of the
complete system is getting a chalenging isue. Such an
approach is supparted by EaSySim Il due to its tailored
communication and integration capabilities.

3 Filtering techniques which may be gplied to master
this problem are not considered as an appropriate means
by which representative validation results can be
achieved. The justificaion of this position cannot be
given here in detail.



5. TOWARDSAN INTEGRATED,
HETEROGENOUS APPROACH

Now, the ideais to combine the strongressof SDL and
its related tools with benefits of methods and todls from
the other application domains as swown by Fig. 6. Such

areas may be: algorithms, human interfaces, databases.

behavioural, interface
performance, | | transformatio
operational — B/RAISE || functional
V&v verification
code C Interface |
generation | Data Base$
code
EaSySim Il _ code Telk generation
SDL integration
ObjectGEODE

Fig. 6: Complementary Verification and Validation

In such a heterogeneous tool approach EaSySim Il
serves as an integration platform allowing to define a
formal behavioural skeleton by SDL into which other
software just can be plugged-in. This concept has

already been applied for simulation and code generation.

It is reasonable to implement algorithms by other
languages like Ada, C or C++ which provide aricher
type mncept. If formal verification and validation are
needed, methods and toadls like B [11], Z [12], RAISE
[13] and SAO+ [14] may be gplied. Also, links to
database software and GUI builders like Tcl/Tk [15] or
Java [16] may be established.

During the presentation it is demonstrated that external
processes (a Tcl/Tk window) cen be sarted and
accessed from SDL by socket communication.

Via the C interface which SDL tods like
ObjedGEODE are supparting, the different system parts
can be integrated on code level: either existing code or
code simultaneously developed with other tools.

It has dready been demonstrated that SDL operators
may be implemented in Ada and attached to SDL. This
is possble in genera for every Ada83 compiler which
supports a C interface or for Ada95 compilers.

Hence, SDL takes over the ntrol (behavioural) part
and reads to incoming demands in acardance with the
system state (described by Finite State Madines). This
alows to be on the safe side for the dedsion logic, but
leaves the functional part to the gpropriate verificaion
and validation means.

Currently an approach is considered for which a
transformation of the interfaces (as defined in SDL)
from left part to right part of Fig. 6 can be aitomated. In
the oppasite diredion just the generated code would be
integrated into the SDL environment.

So far, the main application field of SDL was limited.
This will change in future. One of the next BSSE
projeds will make use of databases and man-machine

interfaces based on the integration cgpabilities as
provided by EaSySim Il and SDL/ObjectGEODE.

This posshility for integration brings the eisting
validation capabilities to new application domains.

6. RECOMMENDATIONS

As was explained a synthesis of existing tool
environments is the best way to get optimum suppart for
development, verification and validation of systems. To
be succesgul the tools must provide open interfaces for
integration of system parts which are developed in
dedicated environments.

A system's behaviour is the result of dedsion-making
which coordinates the functional branches. Therefore
such branches need to be integrated into a behavioural
tool environment. SDL as language and ObjedGEODE /
EaSySim Il are ax example for such an integration
platform.

To gain advantage from ealy system validation in top-
down manner the transition from simulation to target
system neals to be dficient. This requires good
organisation and atool environment which allows for an
easy and fast transition.

7. CONCLUSIONS

The caability of SDL and ObjedGEODE / EaSySim ||
to immediately move from the verificaion and
validation environment to the target system (or its ealy
representation) provides enhanced meansto ched if and
how close the aurrent development stage is to the user's
expedations. This 2-dimensiona life ¢g/cle dlows to
smocthly approach the fina system in a ntrolled
manner from the very beginning.

The @de generation cagpabilities, espeddly the
automated generation of al the mde neeled for
interprocess communicaion, simplify significantly the
development of distributed systems and help to save
effort.

The opennessof SDL all ows to integrate ade generated
by other tods and verificaion environments and to
apply it to a larger applicaion domain. The integrated
code can be used for verificaion and validation on the
host and on the target. So ead of the different methods
and todls can take alvantage of the cagabiliti es of the
other ones and there is no need to implement in one
environment capabilities which are already available.

In such a heterogeneous environment SDL will take the
part of control logic and dedsion-making while the
more functional parts will be provided by the other,
complementary tool environments.

Currently, work is going on to exploit an automated
transformation to another method and environment from
an interface expressed in SDL.
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