
Optimizing the Parameters of an Evolutionary
Algorithm for Fuzzing and Test Data Generation

Ralf Gerlich
Dr. Rainer Gerlich System and Software Engineering BSSE

Immenstaad, Germany
https://orcid.org/0000-0001-6309-927X

Christian R. Prause
DLR Space Administration

Bonn, Germany
https://orcid.org/0000-0003-4856-529X

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—Communication interfaces are particularly
challenging to test using automatically generated test
data. The test data sent through the interface must be
”valid enough” to overcome initial sanity checks of the
interface and reach functions deep inside the integrated
software. Machine-readable information about what
data forms ”valid enough” messages is rarely available
to test data generation tools. So instead, we evolve the
messages with an evolutionary algorithm. This enables
efficient fuzz testing for the communication interface
between a satellite and its ground station. In this pa-
per, using an algorithm implementation in our fuzzing
tool DCRTT, we investigate the impact of algorithm
parameter selection on the performance and the possi-
bility of efficient general default parameter values. The
preliminary results promise significant improvements
to automated testing with respect to software security
testing and quality assurance.

I. Introduction
As illustrated by well-known examples such as the first

flight of the Ariane 5 launcher in 1996 [1], the more recent
losses of the Hitomi space telescope [2] or the Schiaparelli
lander [3], single failures or malfunctions in the onboard
or flight software can cause total loss of the spacecraft.
A substantial increase in losses due to software problems
has been observed within the last 20 years, with software
problems being responsible for between 13% and 30% of
failures ([4], [5]).

Specifically after the failure of Ariane 5 on its maiden
flight, strictness of verification and validation processes in
European space programmes has increased considerably.
Among the standards published by the European Coop-
eration for Space Standardisation (ECSS) those for soft-
ware engineering (ECSS-E-ST-40C) and software product
assurance (ECSS-Q-ST-80C) are the most extensive.

Automation of test data generation for software is a cru-
cial component in the strategy for keeping up with these
rising demands. However, communication interfaces pose
particular challenges for automatic test data generation:
Messages are typically passed in the form of byte streams,
while at the same time the contents of these streams must
follow strict rules (see Fig. 1).

Often, information about the structure and semantics
of these byte streams are not readily available in a form

tc error t process telecommand (
unsigned char∗ data ,
s i ze t s i z e) ;

Fig. 1. Example of a generic byte-stream interface

that can be processed automatically. The information
may be spread out over multiple documents written in
natural language, making manual extraction of formal
information costly and automatic extraction too difficult
or error-prone. In such cases, structural coverage may be
the only formal criterion remaining, although coverage-
directed test case selection may be considered problem-
atic [6].

Several approaches for coverage-driven test data genera-
tion have been suggested and evaluated in the past, rang-
ing from random test data selection to constraint-based
concepts. While the former are simple to implement, they
often are unable to achieve sufficient coverage or require
a large number of test inputs to do so [7], [8]. In contrast,
the latter are more effective in achieving coverage, but
come with the additional burdens of implementation and
computational complexity [9], [10].

Optimisation-based test data generation may be a third
alternative. Here, the coverage goal is expressed in the
form of a cost function to be minimised, and a solution
is found using classical optimisation algorithms. For this,
the actual target hardware can be used and only simple
instrumentation is required.

In this paper, we define an optimisation-based algorithm
for coverage-driven generation of unstructured test data
using evolutionary algorithms and present results from
systematic performance measurements. For the algorithm,
specifically adapted cost functions and mutation operators
were developed. Preliminary investigation [11] provided
initial evidence that the concept is feasible and indicated
potential for further optimisation. Besides its simplicity,
the algorithm remains based on randomisation, addressing
at least in part some of the concerns related to coverage-
driven test case selection.

Theory of operation of the algorithm suggests that
there are optima for at least some of the configuration

parameters. Further, some of the evolutionary operators
may be redundant.

Thus, the following research questions are addressed in
this paper:

• Can optima for parameters be observed in practice?
• Is it possible to simplify the algorithm by removing

elements?
• How can the performance be improved further?
The rest of the paper is structured as follows: In

Section II we present related work. This is followed in
Section III by the introduction of general terms and
theoretical concepts which form the basis of the approach.
In Section IV we describe our specific algorithm used for
test data generation, followed by a discussion of possible
parameter optima in Section V. The measurement setup
as well as the software specimens used as test subjects for
the measurements are introduced in Section VI. Results
from the measurements are presented in Section VII and
discussed in Section VIII. Conclusions on the feasibility of
the algorithm as well as possible future enhancements are
given in Section IX.

II. Related Work
Random test data generation injects randomly selected

data into the system under test based on the declared
interfaces such as functions available in the code and
parameter types specified. The goal is to achieve structural
code coverage or consistent coverage of the input domain
([12], [13], [7]). One of the benefits of this approach
is its simplicity. However, random testing also does not
explicitly distinguish valid from invalid inputs, and is
often unable to provide test data for complete coverage.
This is specifically an issue when generating test data for
interfaces with very generic parameter types.

Considering a continuum of generic methods for test
data generation according to their complexity, with ran-
dom testing on the one end, at the other end we might find
constraint-based approaches ([14], [15], [16], [17]). These
apply constraint-solving techniques to determine inputs
that lead to coverage of specific elements of the code, and
can be distinguished into path- and goal-oriented methods.
Most of these methods use symbolic execution techniques
to reason about the programs to be tested, and thus
also share the quite considerable challenges of symbolic
program analysis such as computational complexity [10],
[9], accuracy of models with respect to hardware, the
pointer aliasing problem [18] as well as infeasible paths.

A path in a control flow graph (CFG) is considered in-
feasible if there is no input that leads to its execution. The
proportion of infeasible paths among the possible paths
in a CFG may be considerable [17]. As a consequence,
repeated random selection of new paths until a feasible
path is found may require an unacceptable amount of
retries.

The latter has been quite successfully addressed in the
area of fuzz-testing by concolic strategies, as evidenced

by the performance of tools such as CUTE [19] and
DART [20]. Concolic testing uses the execution paths
observed during testing with concrete values to determine
feasible paths, and determines test inputs for slightly
modified execution paths using symbolic execution. This
way, the issue of infeasible paths can be diminished quite
effectively. However, the other issues of modelling and
complexity remain.

Search-based approaches [14], [21] and evolutionary al-
gorithms [22] may be a possible middle ground between
random and constraint-based methods. Specifically fuzzers
based on evolutionary principles such as AFL1 or VUzzer
have shown good results [9].

III. Theoretical Foundations of our Approach
Our approach is based on some already known and pre-

established theoretical concepts, which will be introduced
in this section, and may be skipped by readers already
familiar with these principles.

As we aim to select test data based on structural cov-
erage criteria, we describe those used in the algorithm.
Based on these concepts, we consider the cost functions
defined by Korel [14] for test goals based on structural
coverage. We also describe the dominator tree, which is
used to determine a measure of distance in our cost
function definition.

Finally, we detail the basic concepts of evolutionary
algorithms used in our approach. This includes the more
general concepts of populations, cross-over and mutation,
but also more specific ideas such as elitism, immigration
and mutation reversal.

A. Structural Coverage Criteria
Our algorithm aims to select test inputs with the goal

of achieving structural code coverage. Specifically, the
approach targets node and edge coverage based on the
control flow graph (CFG), of which Fig. 2a shows an exam-
ple. A number of widely-used structural test criteria such
as statement-, decision- and condition-coverage, as well
as related criteria such as Modified Condition-/Decision-
Coverage (MC/DC) can be generalised to these concepts.

A node in the CFG of a function under test (FUT)
is considered to be covered by a specific input if and
only if during execution of the FUT with the given input
the respective node is traversed at least once. A node is
considered unreachable if there is no input under which
the node can be covered.

The appropriate definitions regarding edges follow in an
analogous manner. It should be noted that coverage of all
edges also implies coverage of all nodes.

B. Korel’s Cost Functions
In order to express coverage goals as optimisation prob-

lems, the conditions encountered along a path to the node
or edge to be covered need to be transformed into a cost

1http://lcamtuf.coredump.cx/afl/

entry

exit

1

2

3 4 5

size<minsize
size≥minsize

cmd=0
cmd=1

invalid cmd

(a) Control Flow Graph

entry

2 exit

3 4 5

Le
ve

l

0

1

2

1

(b) Dominator Tree with Depth

Fig. 2. Control Flow Graph and associated Dominator Tree

function to be minimised. In Fig. 2a, to execute the path
from the entry via nodes 2 and 3 to the exit, the input must
fulfil the path constraint (size ≥ minsize) ∧ (cmd = 0).

The approach introduced by Korel [14] in his concept
of optimisation-based test data generation uses cost func-
tions for elementary boolean expressions. These are also
the basis for the cost functions in our approach.

The elementary cost function for a condition of the
form E1 op E2 has the form Fop (E1, E2) rel 0, where op
represents comparison operators (≤, <, ≥, >, =, 6=) and
rel is either ≤, < or =.

For example, a comparison E1 < E2 can be transformed
to E1 − E2 < 0. The equality relation E1 = E2 can be
represented using |E1 − E2| = 0 and the inequality E1 6=
E2 by using − |E1 − E2| < 0 [21].

Thus, an input x that ensures that a specific path
traversing edges p = e1, . . . , en is taken, can be be found
by minimizing the value of

Fp (x) = max {Fei
(x) : i = 1, . . . , n} (1)

where Fei
is the cost function associated with the condi-

tion at edge ei. If the minimum value of Fp is greater than
0, there is no input that would lead to execution of p and
the path is infeasible. To represent non-atomic conditions,
short-circuit-code can be applied.

C. Domination and the Dominator Tree
For our cost-function, a measure of distance between

nodes in the CFG is required, which we define based on
the so-called dominator tree. If in a CFG, all paths from
the entry node to a node n traverse a node d, then d is
said to dominate n [23]. For example, in the CFG shown in
Fig. 2a, any path from the entry to Node 3 must traverse
Node 2, and thus, the latter dominates the former.

The domination relation can be represented as a tree
with the entry node as root, which allows the definition
of node distance by the differences in node level. The
dominance tree for the CFG in Fig. 2a is given in Fig. 2b.

D. Evolutionary Algorithms
Evolutionary or Genetic algorithms (GA) are a class of

optimisation methods which are based on the application
of evolutionary principles, an area of artificial intelligence.
A population consisting of a set of candidate solutions – the
individuals – is gradually evolved towards an optimisation

Generation
n

Survival

Immigration

Generation
n+1

C
o
st

Elite

Off-
spring

Elite

Immi-
grants

Procreation

Fig. 3. Evolutionary Principle

goal using concepts analogous to survival of the fittest,
procreation and mutation.

Different from other optimisation methods, evolutionary
algorithms consider a possibly large number of solution
candidates at the same time. This way, typical issues of
non-linear optimisation problems such as convergence to
local minima can be avoided.

The optimisation objective is represented by a fitness
or a cost function, depending on whether a maximization
or a minimization is to be performed. The value of that
function is defined on each individual, and determines how
well the individual solves the respective problem.

Optimisation is performed iteratively, and the com-
position of the population at each iteration is called a
generation. The process ends when either an acceptable
solution has been found or a given number of generations
has been evaluated.

In Fig. 3, the general principle of iteration for the genetic
algorithms used in this paper is shown:

• A portion of the population with the lowest cost
values – the elite – is transferred to the new generation
without any modification [24].

• Another specified portion of the population is filled
with new, randomly generated individuals. This op-
eration is referred to as immigration [13] or hypermu-
tation [25].

• The remainder of the new generation is filled up with
offspring generated from individuals in the previous
generation by recombination in pairs and mutation.

In the algorithm,

• preservation of the elite serves to prevent the loss of
well-adapted individuals,

• immigration and mutation are intended to introduce
variability into the population and prevent conver-
gence towards local minima, and

• recombination is aimed at the production of new solu-
tion candidates by combining features from previous
solution candidates.

In addition to the definition of the elite, the cost func-
tion also plays a role in recombination: Individuals with
lower cost value shall have a higher chance of taking part
in recombination.

IV. Our Algorithm
Our algorithm aims to find a test input for covering a

specific target node or edge in the FUT. This can be used
to complement coverage achieved by other means such as
random testing. As indicated in Section III-B, this can be
transformed into a minimization problem.

Our solution uses a modified evolutionary algorithm to
find such test inputs. The individuals in our algorithm
take the form of a byte stream with a finite length, where
contents and length may vary between individuals within
a configured range. For the algorithm, we define

• a specific cost function,
• appropriate cross-over and mutation operations, and
• a method of probabilistic mutation reversal.

A. Cost Function
The cost value of an individual is determined by exe-

cuting the FUT with the associated byte stream as input
and observing the execution path using instrumentation.
If the target node or edge is reached, the value of the cost
function is zero. Otherwise, the cost value is determined by
looking at the first branch that led away from the target.
Such a branch must have at least one successor node from
which the target can be reached and one, from which this
is not possible.

For example, consider the CFG in Fig. 2a. The way to
reach Node 4 is via the entry node and Node 2. Thus,
the decisions at these two nodes are relevant for reaching
Node 4. If execution proceeds from Node 2 to Node 3, then
that is the first branch leading away from the target, as
Node 4 would have been reachable from Node 2, but is not
reachable any more from Node 3.

Formally, the cost value f (c, d;m) is given as

f (c, d;m) := min {c;m− 1}+md (2)

where d is the distance of the branch from the target (1 in
the example above), c is the condition cost associated with
the specific condition that led to the unwanted branch (see
Section IV-C for details), and m is the cut-off value for the
condition cost, ensuring that cost values associated with
different distances from the target have disjoint ranges.

A candidate for the distance would be the length of
the shortest path from the source node of the current

TABLE I
Cost Function Definition for E1 op E2

op Fop
≤ max {E1 − E2; 0}
< max {E1 − E2 + δ; 0}
≥ max {E2 − E1; 0}
> max {E2 − E1 + δ; 0}
= bits (E1 xor E2)
6=

{
δ ifE1 = E2
0 otherwise

condition to the target node or the destination node of the
target edge. However, that would be too costly to calculate
for each pair of nodes. In our implementation, d is the
distance of the branching node from the target node in
the dominator tree (cf. Section III-C).

B. Handling Loops
If the target node or edge is contained in a loop, there

may be a new chance of reaching the target for each
iteration of the loop. Due to the loop being a strongly
connected component, none of the decisions made inside
the loop – except for those exiting the loop – would lead
to a cost being applied.

Therefore a CFG without back-edges is used as the basis
for reachability decisions. For this, the minimum distance
of each node from the entry node is defined. A back-edge is
an edge leading from a node with higher minimum distance
to lower minimum distance.

As a consequence, in a program containing loops, a
branch away from the target may occur multiple times if
the target lies inside the loop. In these cases, the minimum
cost occurred in any of the iterations is used as the cost
for the individual.

C. Condition Cost
The functions used in this algorithm to determine con-

dition cost for different conditional operators are given in
Table I. The relation op is the one that has to be fulfilled
in order to lead execution towards the desired branch.

They are similar to those introduced in Section III-B,
but with some modifications:

• Their values are ensured to be positive. This way, the
actual minimum is at zero.

• The small value δ > 0 ensures that the cost function
only becomes zero if the desired condition is fulfilled.

• The definition of the equality operator is based on
the bit distance. In context of the bit flip mutation
operator (cf. Section IV-E) this cost function has
shown better monotonicity.

• For two equal operands only a small change is neces-
sary to make them not equal. Thus, the cost function
for 6= only has two possible outcomes.

D. Generation of Offspring
In Fig. 4 the principal operation of recombination and

mutation is shown. The process consists of multiple steps:

Parent A

Parent B

3y776-F$D#

1A(37$2i

3y777$2i 3y737$2mr

Bitflip

ExtendAdd

Mutation

Crossover

Offspring

Fig. 4. Creation of a new individual

1) First, two parent individuals are selected randomly
using stochastic acceptance [26].

2) A random cut-point k is selected using a uniform
distribution.

3) A new byte stream is formed by concatenating the
first k bytes from the first parent to the bytes from
the second parent starting at byte k + 1.

4) Mutation is applied to the new individual.

E. Mutation
There are several mutation operators available, which

are optionally applied in sequence:
• Extension of the byte stream by one random byte at

the end,
• reduction of the byte stream by one byte, cutting off

the last byte,
• random bit flips, and
• addition of a random value to a randomly selected

byte.
Each of these mutation operators is applied with a

configurable probability. Extension and reduction of the
byte stream length are performed at most once per recom-
bination operation, and only if the length of the resulting
stream would still be within the configured range.

Bit flips and addition mutations may be executed mul-
tiple times. The probability for n such operations to be
performed on a single offspring is pn (1− p), where p is the
bit flip or addition probability parameter, respectively.

F. Mutation Reversal
Mutation reversal randomly reverts individual muta-

tions if they increase the cost value. For this, the FUT
has to be executed after each mutation to re-evaluate the
cost function. This strategy allows employing probabilistic
gradient descent in addition to other optimisation opera-
tors.

V. Expectations for Optima
For some of the parameters, the existence of optimal

values is to be expected:
• Increasing population size will increase the number of

executions of the FUT, but also the chance of finding
a solution.

• An elite proportion of 0 would mean that well-adapted
individuals may be lost from one generation to the
next. In contrast, for an elite proportion of 1 would
degenerate the algorithm to an initial random sam-
pling without evolution.

• An immigrant proportion of 1 would degenerate the
algorithm to constant random re-sampling of the
population without evolution.

• A too high level of mutation may lead to too much
variation of already good solution candidates and thus
stagnating progress in later phases of iteration.

• Reversal with a probability of 1 would lead to simple
gradient descent, with the possibility of finding only
local minima. However, this may be counteracted
by the fact that the genetic algorithm does consider
multiple solution candidates.

VI. Methods
To evaluate the impact of the algorithm parameter

values on performance, we ran measurements on several
code examples. We considered search success and the
number of executions of the FUT as primary end-points.

Execution time was not considered as primary end-
point, as it is influenced also by the execution time of the
FUT. Optimizing configuration parameters for execution
time might thus implicitly optimise for the selection of
input values that minimize execution time. However, exe-
cution time was recorded to validate this assumption.

The algorithm was implemented as part of the commer-
cial random test tool DCRTT [7]. DCRTT first stimulates
the function under test using random data. Then the
evolutionary algorithm is applied by successively consid-
ering targets remaining uncovered. This also means that
targets accidentally covered by earlier applications of the
evolutionary algorithm are not considered again later. In
this way, we only look at targets that are difficult to cover.

For each target, measurements were repeated multiple
times (n = 2000) with values for the algorithm parameters
selected randomly according to a uniform distribution.
Each measurement ran until either the search for a solution
succeeded or the maximum number of generations (2000)
had been reached.

Two measurement campaigns were executed:
• The goal of the first campaign was to identify major

influences on algorithm performance.
• The goal of the second campaign was to support finer

analysis of specific aspects of the algorithm. For this,
strongly disadvantageous elements identified in the
first campaign were deactivated.

For each measurement, the following data was recorded:
• The values of all algorithm parameters,
• a flag indicating whether a solution was found (search

success),
• the total execution time in seconds,
• the total number of generations evaluated, and
• the total number of times the FUT was executed.

TABLE II
Parameter Ranges

Parameter Minimum Maximum
Maximum Individual Size (Bytes) 1 32
Population Size 2 500
Elite Proportion 0 0.90
Immigrant Proportion 0 0.90
Extension Probability 0 0.95
Reduction Probability 0 0.95
Bit Flip Probability 0 0.95
Addition Probability 0 0.95
Mutation Reversal Probability 0 1.00

A. Parameter Ranges
The ranges of the parameters considered are given in

Table II. Minimum individual size was fixed to 0 bytes.
The size of valid messages for both examples does not
exceed 32 bytes, so this was chosen as a maximum. Note
that some probability parameters where not evaluated
to their full range for reasons discussed in Section V.
Immigrant proportion was reduced if elite and immigrant
proportions together would otherwise exceed 1.

B. Analysis Models
We used a logistic regression model to analyse the im-

pact of the parameters given in Table II on search success
probability. For the execution counts, a linear model was
used, with the execution count normalised by its standard
deviation used as endogenous variable. A significance level
of p ≤ 0.05 was used for all analyses.

These models included a linear and a quadratic term
for each varied parameter in order to determine possible
optima. To assess the impact of parameters, the difference
between their respective worst- and the best-case contri-
bution was assessed.

A linear model of execution time based on execution
counts and maximum individual size was used to deter-
mine whether the latter sufficiently explained the former.

C. Test Corpus
Six functions – two groups of three each – were used

to evaluate the algorithm. They are based on entry-point
functions found in real flight software.

The two groups of functions mainly differ in that those
in the first group only consider constant-length messages
while those in the second group also allow for variable-
length messages. Each of the functions checks each of the
validity conditions for fulfilment, and returns a success
code if the command is valid, or a failure code if it is not.
Thus, reaching the check for a validity condition depends
on the other conditions to be fulfilled.

The main function of the first group is a dispatch
function, shown in Fig. 5. The second group only contains
decoding functions for commands of similar structure, but
differing in the way validation is performed.

Note that the type-field used for command dispatch in
Fig. 5 is 32 bits wide. In a single run of the evolutionary

tc error t process telecommand (
unsigned char∗ data ,
s i ze t s i z e) {

tc header t∗ header = (tc header t ∗) data ;
i f (s i z e <s izeof (tc header t))

return t c e r ror inva l id s i z e ;
switch (header−>type) {
case tc set log parms :

return set log parms (tc) ;
case tc download log : /∗ Block 9 ∗/

return download log tc (data , s i z e) ;
default :

return tc error inval id type ;
}

}

Fig. 5. Example Code from First Group (excerpt)

algorithm without mutation reversal, the FUT is executed
up to 106 times – once per individual and generation.
The probability of hitting at least one in 232 values
randomly with that many tries is less than 3 10−4. Thus, if
the evolutionary algorithm can repeatedly find matching
inputs within this number of FUT executions or less, it is
clearly superior to random sampling.

VII. Results
For the examples, a total of five nodes were not covered

by random test data generation, and were thus submitted
to the evolutionary algorithm. For these nodes, measure-
ment data has been captured. The individual targets are
identified by the function and block numbers assigned by
the DCRTT tool for the nodes to be covered2.
A. Required Number of Generations

In Figure 6 the cumulative proportion of successful runs
over the number of generations for the second measure-
ment campaign is shown. The steep curve for Function 1,
Block 5 indicates that random search is actually sufficient
given the restricted message size as specified by the algo-
rithm parameters. As a consequence, only results from the
other four targets are used in the following.
B. Explanatory Power of the Parameter Models

A large part of variance in execution time can be
explained using a linear model of execution counts and
maximum input size (R2 > 0.47 for the first and R2 > 0.86
for the second measurement campaign).

The variance of execution count explained by the config-
uration parameters was lower, with R2 ranging from 0.18
to 0.27 for the first and from 0.26 to 0.40 for the second
measurement campaign. For the logistic regression model
of search success, pseudo-R2 ranged from 0.37 to 0.50 for
the first and from 0.62 to 0.83 for the second campaign.

2A data package containing inputs and results is available at https:
//www.bsse.biz/tedaga eval2020.zip. A free, limited-time evalua-
tion license of DCRTT solely for purposes of replication is available
on request. The function and block numbers are kept as reference to
the data package.

0.0 0.5 1.0 1.5 2.0
Number of Generations 1e3

0.0

0.2

0.4

0.6

0.8

Cu
m

ul
at

iv
e

Su
cc

es
s F

re
qu

en
cy

Function 0, Block 9
Function 1, Block 5
Function 1, Block 10
Function 4, Block 14
Function 5, Block 17

Fig. 6. Success by Generation Count – Second Measurement

F0
B9 f

irs
t

F1
B10

 fir
st

F3
B14

 fir
st

F4
B17

 fir
st

F0
B9 s

eco
nd

F1
B10

 se
con

d

F3
B14

 se
con

d

F4
B17

 se
con

d
102

103

104

105

106

Ex
ec

ut
io

n
Co

un
t

Fig. 7. Comparison of Execution Counts

C. Impact of Hypermutation and Mutation Reversal
Data from the first measurement campaign indicated

that mutation reversal has no defined impact on either
search success or execution counts. Immigration increases
execution count.

Therefore, in the second measurement campaign, mu-
tation reversal and hypermutation by immigration were
completely disabled. The box plot in Fig. 7 shows the
comparison of execution counts from both campaigns.

D. Parameter Influence on Performance
The statistical execution count model determined the

optimum population size to be 0. The impact of population
size on execution count ranged from 0.07σ to 0.30σ, where
σ is the standard deviation of the execution count for
the individual examples. However, as this is not a useful
optimum, population size was not considered in optimising
execution count.

The impacts, coefficient ranges and optima of parame-
ters for execution count and success probability are shown
in Tables III and IV, respectively. The optimal parameter
ranges of elite proportion and addition probability for ex-
ecution count and population size for search success seem
large. However, the largest impact size for elite proportion
and for population size coincides with their respective

TABLE III
Influence on Execution Count

Parameter Impact Range Optimum Range
Min Max Min Max

Elite Proportion 0.19σ 0.81σ 0.29 0.48
Maximum Individual Size 0.09σ 0.22σ 21 23
Addition Probability 0.03σ 0.29σ 0 0.53
Reduction Probability 0.05σ 0.26σ 0 0
Bit Flip Probability 0.05σ 0.11σ 0.51 0.57
Extension Probability 0.03σ 0.13σ 0.46 0.58

TABLE IV
Influence on Success Probability

Parameter Coeff. Range Optimum Range
Min Max Min Max

Maximum Individual Size 12.08 31.41 19 22
Population Size 2.69 5.31 295 500
Elite Proportion 2.35 2.82 0.50 0.59
Addition Probability 1.73 1.73 0.40 0.40

largest value. For addition probability, the smallest value
has the highest impact.

VIII. Discussion
The results show that hypermutation by immigration

and mutation reversal can be dropped from the algorithm,
as the former has an adverse effect and the latter has no
effect at all on performance. By deactivating both features,
execution counts were reduced by factors between 2 and
10, with the exception of a single target (Fig. 7).

Global optima were identified for some parameters. For
example, designating half of the population for an elite
seems to be a good compromise, with a sizeable impact
on both success probability and execution count. Also,
there are low-impact optima for extension and bit flip
probability.

Maximum individual size is the most important contrib-
utor to success probability and ranks second for execution
count. In both cases, the optimum is slightly above the
largest message size expected by the tested functions.
However, this also indicates that execution counts would
increase if the size range considered increases. This is
consistent with results found by Rawat et al in their
analysis of application-aware fuzzing [9].

The optima of population size for success probability
are less consistent with each other, but increase with
larger impact size. This may indicate that there is no
general optimum. Clearly, a larger population provides a
larger set of samples given a finite limit on the number of
generations.

A surprising result is that the optimum for reduction
mutation seems to be deactivation. As message length can
only be changed by reduction and extension mutations
and some of the examined targets require exact message
lengths, this means that the matches could have only been
generated by extending existing smaller individuals.

Similarly, the optimum for addition mutation is deac-
tivation as well. Although this mutation can be compen-

sated by the bit flip mutation, the two are not expected
to be completely independent of each other.

Block 10 of Function 1 seems to pose a specifically
difficult problem for the algorithm. This target can be
reached only if the message has a length of exactly 7 bytes,
a specific reserved field r of 4 bits widths has the value 0,
and another 16-bit unsigned integer field x equals 0. To get
to the decision checking x for zero, x < 100 must already
be satisfied. From then on, any mutation that modifies
the 4 bits of r or any of the upper 9 bits of x will set
back the respective individual to failing any of the earlier
conditions. This seems to be a specifically difficult problem
for the algorithm.

After 500 generations none of the examples showed
significant progress in terms of success probability. Thus,
it seems prudent to use that as a cut-off point to detect
unsuccessful runs.

IX. Conclusions and Outlook
We have evaluated the performance impact of several

elements of an evolutionary algorithm for coverage-driven
test data generation. The analysis shows that several
aspects of the algorithm can or should be dropped, improv-
ing performance and reducing complexity. Some of these
results are surprising and may require further investiga-
tion.

One of the examples proved difficult to cover by the
algorithm due to a relational operator that works very
similar to the equality operator. Thus, the defined cost-
functions for relational operators may have to be recon-
sidered in order to account for such cases.

Our results also reinforced the dependency of search
performance on message size. Here, monitoring memory
access similar to VUzzer may be useful to guide mutations.

Finally, many of the telecommand processing functions
targeted here are very linear in nature, with each step be-
ing executed only if the previous ones succeeded. Thus, the
usefulness of evolutionary cross-over for these situations
may be doubted and should be investigated.

References
[1] J.-L. Lions, L. Lübeck, J.-L. Fauquemergue, G. Kahn, W. Kub-

bat, S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran,
“Ariane 5 flight 501 failure - report by the inquiry board,” Tech.
Rep., Jul. 1996.

[2] A. Witze, “Software error doomed japanese hitomi spacecraft,”
Nature, vol. 533, pp. 18,19, May 2016.

[3] T. Tolker-Nielsen, “EXOMARS 2016 - Schiaparelli Anomaly
Inquiry,” Tech. Rep. DG-I/2017/546/TTN, May 2017.

[4] J. S. Newman, “Failure-space - a systems engineering look at 50
space system failures,” Acta Astronautica, vol. 48, no. 5-12, pp.
517–527, 2001.

[5] A. Gorbenko, V. Kharchenko, O. Tarasyuk, and S. Zasukha,
“A study of orbital carrier rocket and spacecraft failures: 2000-
2009,” An Int. J. of Inf. & Sec., vol. 28, 2012.

[6] G. Gay, M. Staats, M. Whalen, and M. P. E. Heimdahl, “The
risks of coverage-directed test case generation,” IEEE Trans. on
Softw. Eng., vol. 41, no. 8, pp. 803–819, Aug. 2015.

[7] R. Gerlich, R. Gerlich, K. Kvinnesland, B. S. Johansen, and
M. Prochazka, “A case study on automated source-code-based
testing methods,” in Proc. of DAta Systems in Aerospace, 2013.

[8] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code coverage
of adaptive random testing,” IEEE Trans. Rel., vol. 62, no. 1,
pp. 226–237, Mar. 2013.

[9] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “VUzzer: Application-aware evolutionary fuzzing,” in
Proc. 2017 Netw. and Distr. Syst. Sec. Symp., 2017.

[10] C. Barret, L. de Moura, and A. Stump, “Design and results of
the 2nd annual satisfiability modulo theories competition (SMT-
COMP 2006),” Formal Methods in System Design, vol. 31, no. 3,
pp. 221–239, Dec. 2007.

[11] R. Gerlich and C. R. Prause, “Evaluating test data generation
for untyped data structures using genetic algorithms,” in 2018
IEEE International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). IEEE, Apr. 2018.

[12] R. Hamlet, “Random testing,” in Encyclopedia of Software
Engineering, J. Marciniak, Ed. Wiley, 1994, pp. 970–978.

[13] T. Y. Chen, D. H. Huang, and F.-C. Kuo, “Adaptive random
testing by balancing,” in RT ’07: Proceedings of the 2nd inter-
national workshop on Random testing, 2007, pp. 2–9.

[14] B. Korel, “Automated software test data generation,” IEEE
Trans. Softw. Eng., vol. 16, no. 8, pp. 870–879, 1990.

[15] A. Gotlieb, B. Botella, and M. Rueher, “A CLP framework for
computing structural test data,” Lecture Notes in Computer
Science, vol. 1861, pp. 399–413, 2000.

[16] A. Denise, M.-C. Gaudel, and S.-D. Gouraud, “A generic
method for statistical testing,” in Proceedings of the 15th IEEE
International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2004, pp. 25–34.

[17] R. Gerlich, “Verallgemeinertes Rahmenwerk zur constraint-
basierten Testdatenerzeugung aus Programmflussgraphen,”
Ph.D. dissertation, Faculty of Engineering and Computer Sci-
ence, University of Ulm, Germany, 2009.

[18] B. Elkarablieh, P. Godefroid, and M. Y. Levin, “Precise pointer
reasoning for dynamic test generation,” in Proceedings of the
eighteenth international symposium on Software testing and
analysis. ACM, 2009, pp. 129–140.

[19] K. Sen and G. Agha, “CUTE and jCUTE: Concolic unit testing
and explicit path model-checking tools,” in Computer Aided
Verification. Springer Berlin Heidelberg, 2006, pp. 419–423.

[20] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed auto-
mated random testing,” in PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation. ACM, 2005, pp. 213–223.

[21] R. Ferguson and B. Korel, “The chaining approach for software
test data generation,” ACM Trans. Softw. Eng. Methodol.,
vol. 5, no. 1, pp. 63–86, 1996.

[22] J. Miller, M. Reformat, and H. Zhang, “Automatic test data
generation using genetic algorithm and program dependence
graphs,” Inf. Softw. Technol., vol. 48, pp. 586–605, 2006.

[23] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding
dominators in a flowgraph,” ACM Trans. Program. Lang. Syst.,
vol. 1, no. 1, pp. 121–141, 1979.

[24] S. Baluja and R. Caruana, “Removing the genetic from the
standard genetic algorithm,” in Proc. of the 12th Int. Conf. on
Machine Learning. Morgan Kaufmann, 1995, pp. 38–46.

[25] J. J. Grefenstette, “Genetic algorithms for changing environ-
ments,” in Proceedings of the 2nd International Conference on
Parallel Problem Solving from Nature, 1992, pp. 137–144.

[26] A. Lipowski and D. Lipowska, “Roulette-wheel selection via
stochastic acceptance,” Physica A: Statistical Mechanics and its
Applications, vol. 391, no. 6, pp. 2193–2196, Mar. 2012.

