

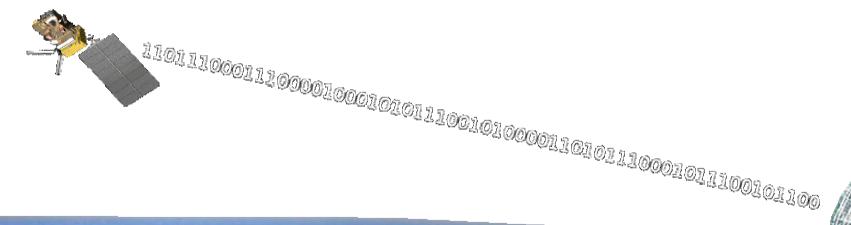
Evaluating Test Data Generation for Untyped Data Structures Using Genetic Algorithms

Ralf Gerlich Christian R. Prause

This work is supported by a grant from the German Federal Ministry for Economic Affairs and Energy, based on a decision of the German Bundestag, grant No. 50PS1601.

Motivation

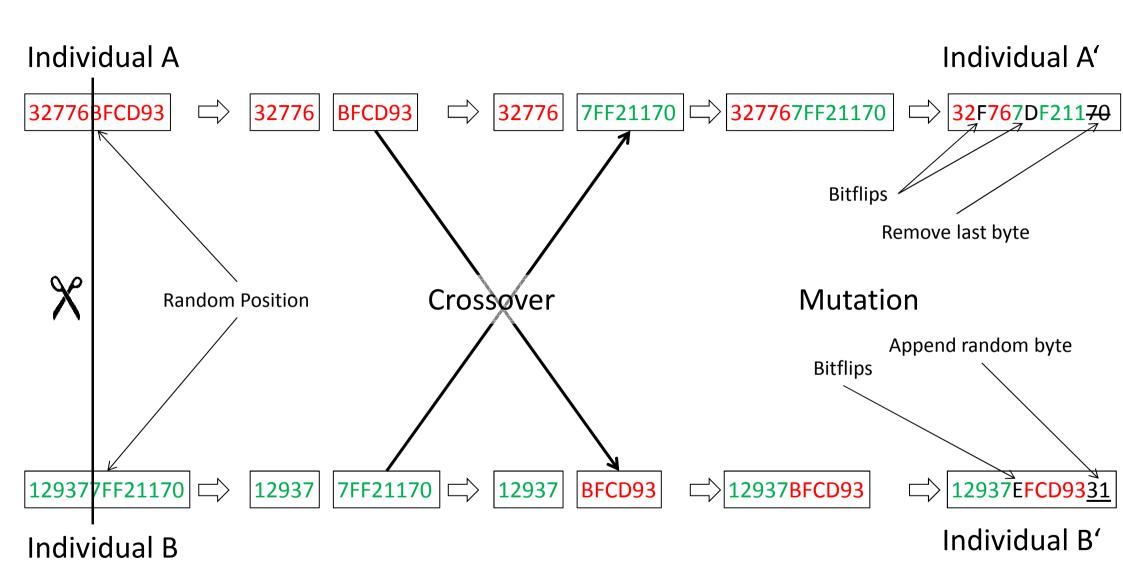
- ➤ Spacecraft software assumes critical functions
- > Failure may be costly
 - Ariane 5.01: €1 Billion
 - Hitomi: \$286 Million
- Software is thorougly verified, e.g. by test
- ➤ High effort ⇒ automation possible?


Public domain. Fabio Baccaglioni. https://www.youtube.com/watch?v=Z9EnUQltR9A (2017-04)

CC BY 2.0: JAXA/Akihiro Ikeshita. https://www.flickr.com/photos/nasablueshift/140708465212017-05-02

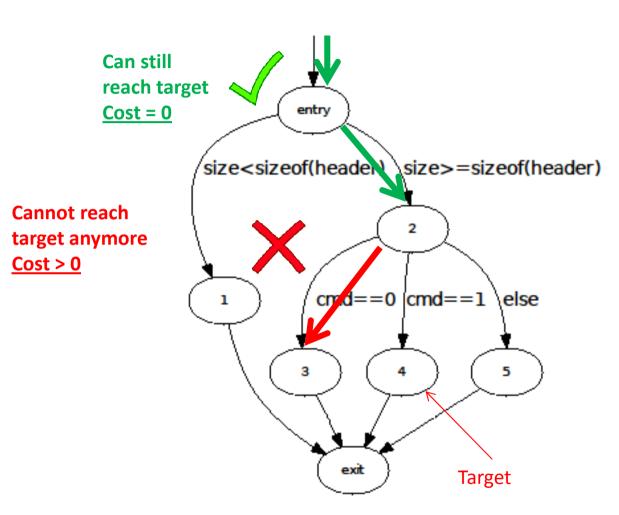
Test Domain

- ➤ Spacecraft processes Telecommands from Ground Station, rejects invalid commands
- > Commands arrive as untyped bytestreams
- > How to generate test inputs?



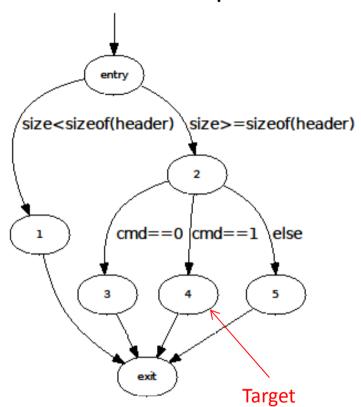
Genetic Algorithms

- > Evolution towards optimization goal
- > Sequence of Generations
- ➤ Individuals are Byte Sequences
- > Fitness determines probability of procreation
- Genetic Operators modify individuals
 - Cross-Over
 - Mutation with probabilistic reversal
- > Elite gets into next generation
- ➤ Influx due to immigration

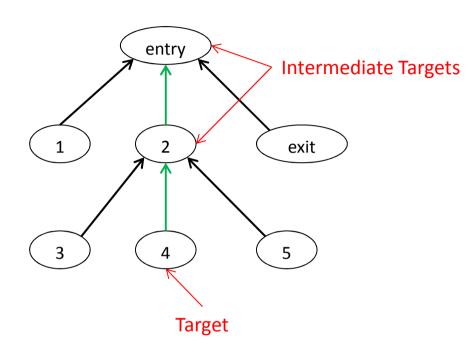


Cross-Over and Mutation

Cost-Function


Cost Function describes how far individual is off from reaching target

Desired Condition	Cost Function			
E op F (op ∈ {=,<,>,≤,≥})	$\begin{cases} 0 & \text{if } E \text{ op } F \\ F - E & \text{otherwise} \end{cases}$			
E != F	\begin{cases} 1 & if E op F \\ 0 & otherwise \end{cases}			



Sequential Approach: Intermediate Target

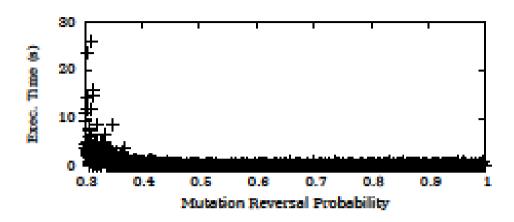
Control-Flow-Graph

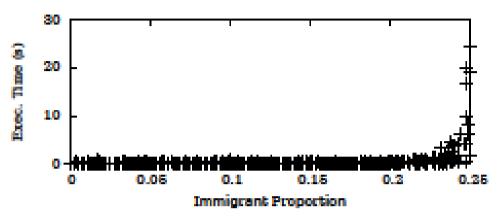
Dominator Graph

- ➤ Single Step Approach: Use final target only
- > Sequential Approach: Use intermediate targets

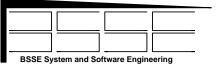
Preliminary Evaluation

- ➤ Analyse Feasibility
- > Compare runtime of algorithm variants
- > Determine impact of parameters on runtime
 - Population Size
 - Elite Proportion
 - Immigrant Proportion
 - Mutation Probabilities
 - Mutation Reversal Probability
- > So far only on simple example


Runtime Measurements: Algorithm Variants


Variant	Min (s)	Mean (s)	Max (s)	
Sequential	0.161	2.595	15.931	
Single-Step	0.268	15.553	146.180	

- > Sequential is way faster than Single-Step
 - Mean runtime: Factor 6
 - Maximum runtime: Factor 9


Runtime Measurements: Parameters (1/2)

- Mutation Reversal has positive effect on runtime
- Does not seem to extend past p≥0.4

- ➤ Immigrant Proportion has no noticeable effect for p≤0.2
- Negative effect for p≥0.2

Runtime Measurements: Parameters (2/2)

Byte Extension Probability	0.00	0.25	0.50	0.75	1.00
Mean Execution Time (s)	0.46	0.13	0.12	0.12	0.13

- ➤ Optimum Value in the range $0.5 \lesssim p \lesssim 0.75$
- ➤ Decrease of Factor 3 from p=0 to p=0.25
- ➤ No further noticeable change for p→1

Conclusions so far

- > Sequential Approach is superior
- Significant positive impact of mutation reversal
- ➤ No positive effect from immigration, negative effect for more than 20% of population
- This genetic algorithm seems promising for generating telecommand test data

Future Work

- ➤ Integration with random test tool (DCRTT) is underway...
- Application to industry-grade code
- > Comparison to random testing performance
- > More detailed analysis of parameter impacts
 - Multivariate
 - Measurements on more realistic code

Thank you for your attention!

Important Question:

Is there a general "good enough" set of parameters for all applications?