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Abstract— Manual requirements-based testing is time-
consuming: Input data must cover the requirements and 
observed output data must be checked for their compatibility 
with the requirements. Testcases can also be automatically 
generated from test models. However, these models first have to 
be established manually. In contrast, the approach to be 
presented here uses simpler ways of formalizing requirements 
to automatically map test data generated for automatic 
robustness testing using massive stimulation to requirements and 
to check the results for correctness. 
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I. INTRODUCTION 

Fig.  I-1 shows the classical approach to requirements 
verification using function or unit tests and manually designed 
test cases. The source code is written based on the 
requirements, and a mapping between functions and 
requirements is established manually. Test cases for unit 
testing are manually derived from the requirements. Input data 
and expected outputs are transformed into test scripts, which 
are used to execute the tests and generate a pass/fail verdict. 

 
Fig.  I-1: Verification by manually established test cases 

II. MODEL-DRIVEN APPROACHES TO REQUIREMENTS 
TESTING 

In the last few years various approaches for deriving tests 
for requirements verification from models have been 
proposed. For this, the desired behaviour is modelled and 

annotations for determining requirements coverage and 
checking of requirements fulfilment are added [1]. Using 
random walks or similar methods test sequences and test data 
are derived from the models and transformed to test scripts 
manually or automatically. 

In the ideal case a specification model is available which 
can be used for such a method with only few modifications. 
Otherwise, a test model needs to be established and verified 
against the specification manually – with the latter often only 
being present in text form. 

A. Automated Robustness Testing 

Automated robustness tests – sometimes also referred to 
by the term “fuzzing” – are used to test a component for 
robustness against unexpected or undesired inputs[2]. The 
component is stimulated using, e.g., random data, and the 
behaviour of the component is monitored for anomalies 
during execution. This may even allow identification of 
functional defects in the component. The simple form of test 
data generation using random data allows for a high test data 
throughput – resulting in massive stimulation. 

The results of these tests, however, do not allow for 
conclusions about the fulfilment or coverage of requirements. 
A mapping from test inputs to requirements is missing. 

B. Automated Requirements-based Testing 

Automated requirements based testing on source code-
level requires and aims to automatically establish a correlation 
between requirements and test cases. At the same time the 
mapping between the requirements and the affected functions 
in the code needs to be found. Test data shall be automatically 
generated and applied, in order to reduce the manual effort 
drastically. 

The selected approach uses three mappings [3]: 

 between input data to requirements (requirements 
coverage), 

 between requirements and functions, and 
 between requirements and oracles. 

This principle is shown in Fig.  II-1. machine-readable 
requirements are integrated with the function test and 
evaluated during massive stimulation. This allows 
determination of both requirements coverage and fulfilment. 
In the case of non-fulfilment the associated test data vector 
describes a counter-example. 



 Dr. Rainer Gerlich BSSE System and Software Engineering, 2019 
-2- 

 
Fig.  II-1: Principal Approach 

Oracles are used for evaluation of requirements fulfilment. 
An oracle is an executable procedure which generates a 
pass/fail/don’t-know-verdict for a pair of input and observed 
output. It is possible for single oracles to only provide definite 
results for specific real subsets of the input domain. Ideally all 
oracles together cover the whole input domain. 

Fig.  II-2 shows further details of the automatic approach. 
The input space is sampled by a configurable number of 
samples, using massive stimulation. The oracles are applied to 
each test vector and the resulting verdict is recorded. This 
way, counter-examples for non-fulfilment of requirements 
can be found. 

 
Fig.  II-2: Process Details 

 
Requirements and functions generally form an n:m 

relationship. Specific requirements can apply to multiple 
functions, such as requirements on numerical accuracy. 
Similarly, a single function can implement multiple 
requirements or contribute to their implementation. 

To map requirements and functions to each other, the 
affected elements – data objects, structures, parameters – must 
be extracted from the text of the requirement and be associated 
to their counterparts in the Code. This can be done using 
naming rules which translate names from the requirements to 
names in the code – possibly using an identity mapping. This 
way oracles can be mapped to functions by concatenating the 
relationships of oracles to requirements and requirements to 
functions. An elaborate manual mapping can be avoided this 
way. 

Fig.  II-3 illustrates the logical flow in the context of 
hierarchical requirements. Top-down requirements should be  
detailed down to a level at which they can be transformed into 
code. This is the highest level at which oracles can be defined 
in a meaningful manner. Requirements on higher level are 
usually not suitable for verification by code-level- or unit 
tests. 

Finally, the mapping from inputs to requirements is used 
to determine requirements coverage and to back-trace it 
through the different requirement hierarchy levels up to high-
level requirements. This back-tracing is done using the 
traceability information provided in the form of “refines”- or 
“implements”-relationships between the different levels of 
requirements. 

C. Massive Stimulation and the Derivation of Test Vectors 

For each function a test environment is established 
automatically, which stimulates the function using data from 
the input domain of parameters – including global 
variables[2]. Special cases such as -1 or 0 for integers are 
considered specifically. Other methods for targeted coverage 
of specific parts of the code are used, such as constraint-based 
or other search-based approaches to test data selection. In 
addition, invalid values can be injected and parts of the code 
can be specifically modified or supplemented, e.g. to simulate 
lack of memory and similar conditions. 

Interesting test case candidates for generation of 
regression test suites are then selected from the massive set of 
test inputs. An input may be interesting if it contributes to 
requirement or code coverage, elicits exceptional behaviour or 
violates the rules implied by an oracle. These suites can also 
be re-executed with external test management tools – such as 
Cantata or VectorCAST – and their results can be re-
evaluated. 

Fig.  II-3: Overall Process for Hierarchical Requirements 
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III. THE ORACLE APPROACH 

In this approach the oracles are represented as temporal 
implications: If Condition A holds for the input before calling 
the function, then Condition B must hold for the tuple of input 
and output after execution of the function (Fig.  III-1).  

 

 
Fig.  III-1: Structure of Oracles 

If Condition A is not fulfilled before the function call, 
Condition B is not evaluated and the oracle provides don’t 
know as result. Here, Condition A is called the pre-condition. 

Using this structure a tautology – i.e. an expression that is 
always true – can be used as pre-condition. In this case, 
Condition B must hold for every test vector. This way, e.g., 
restrictions for the ranges of the results can be expressed. 

Using known relations between requirements at different 
levels the results can be mapped to higher-level requirements. 
This way on each level the functions contributing to positive 
or negative verification results can be determined. 

Although verification using massive stimulation is based 
on a large number of test vectors, the set of these test vectors 
is finite after all. Thus a complete analysis of the input space 
is usually not possible. However, the number of automatically 
generated stimuli usually exceeds by far the number of test 
cases providable using manual methods – which is relevant 
specifically for finding counter-examples. 

A. Examples 

Consider as an example an oracle for the square-root-

function. The simple approach 𝑥 ≥ 0 ⇒ √𝑥
ଶ

= 𝑥 would be 

mathematically sound. However, it is not applicable where 
numerical precision is finite. A correct approach for 
normalised floating point values would be 𝑥 ≥ 𝑓௠௜௡

⇒ ฯ
√௫

మ
ି௫

௫
ฯ < 𝜀, where 𝑓௠௜௡ is the smallest normalized 

floating-point number. For 0 < 𝑥 < 𝑓௠௜௡  absolute error 
limits would have to be used. 

An oracle for the abs-function from the C Standard 
Library seems even simpler: 𝑥 ∈ 𝑖𝑛𝑡 ⇒ 𝑎𝑏𝑠(𝑥) ≥ 0. 

Interestingly the value of abs(INT_MIN) is negative, as 
INT_MIN itself cannot be represented as a value of int. 

Type ranges are also to be considered in other cases: The 

oracle ฯ
ඥ௫మି௫

௫
ฯ < 𝜀 for the square function will produce 

many apparent counter-examples, as for many values of 𝑥 
squaring them leads to a float-point overflow. 

Thus also here – as for many other approaches of 
formalising requirements – the possibility of detecting 
incomplete and inaccurate requirements is present. 

Truth tables, e.g. for system states, can be easily 
represented, as Fig.  III-2 shows. 

 
Fig.  III-2: : Checking System States using Oracles 

IV. OPEN ISSUES 

A. Requirements Notation 

At the moment most requirements are expressed in free 
text, which cannot be automatically evaluated. An analysis of 
such requirements led to the conclusion of them being 
incomplete, ambiguous or inconsistent, and thus not being 
applicable for this method. In manual verification, these 
shortcomings have to be compensated by creativity. 

A pre-requisite for formalisation of requirements is an 
adequate notation. This notation can also come in a form more 
suitable to the user than the oracle form. However, it has to be 
automatically transformable into the oracle notation. 
Requirements presented in a formalised table structure are 
convenient for this. 

As far as functional aspects of a software system go, there 
are a number of approaches to choose from for formalising 
requirements, such as Abstract State Machines[4], a 
generalisation of Finite State Machines, Petri Nets, or 
operation contracts in the form of pre- and post-conditions, to 
name just a few. Logical foundations can be found in temporal 
logic, with linear temporal logic being one of the most 
prominent variants due its use in model checking.  

Sequence-based specifications[1][5] describe the 
behaviour of the system in terms of stimuli and the resulting 
responses, but also come with a concept of determining such 
specifications by enumerating possible stimulus-response 
sequences from existing preliminary or finalised requirements 
documents, reducing them to a finite description at the desired 
level of detail. 

Although the domain of non-functional aspects is much 
larger, important concepts such as timing can be introduced in 
many of these models using appropriate annotations, such as 
for response-times or maximum buffer sizes. 

These approaches describe the theoretical foundations 
which are at the base of the respective form of description. 
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While the underlying theory guides both the required semantic 
content as well as its basic structure, it is possible to choose 
from various forms of presentation. For example, abstract 
state machines can be represented in a graphical manner – as 
long as a semantical model is stored in parallel –, in the form 
of state-transition tables or as pre- and post-conditions 
establishing the relationship between source- and target-states 
of any transition. 

Care must be taken when specification models specify 
features that are not explicitly present in the final software. 
One example might be a specification using finite state 
machines, without there being a variable in the software 
explicitly representing the current state from the state 
machine. Instead, the state may be implicit in that some 
sequences of operations simply would lead to undesired 
results. In such a case, abstract state machines making the 
preconditions of operations explicit may be a more useful 
modelling tool. 

On a conceptual level, the idea of formalising software 
requirements and design is not very different from specifying, 
e.g., control systems. Here the underlying system dynamics is 
formally described using differential equations or process 
graphs and the requirements can be defined in terms of the 
desired dynamic properties of the controlled system. The use 
of such concepts is quite well-established in the specification, 
design, verification and validation of control algorithms. 

While it might not be possible to express all aspects of a 
software system in a formal way, there is a plethora of 
methods to chose from. 

B. Quality Assurance of Oracles 

Like any other code, also oracles are subject to quality 
assurance. Mistakes in oracles could otherwise lead to 
overlooking possibly critical software faults. As each oracle 
can be applied to large subsets of the input domain, it is even 
possible for faults with huge impact to be overlooked if the 
oracle is incorrect. A similar risk exists in manual testing, 

albeit for a different reason, namely not considering relevant 
test cases in the first place or constructing the expected 
output in an incorrect manner. 

V. OUTLOOK AND FUTURE WORK 

As no machine-readable requirements were available, the 
current implementation is based on oracles manually 
implemented in C, with the aim of showing feasibility and 
advantages. 

In future work a more abstract form shall be identified 
which is also more acceptable to users. For this, text-based 
requirements shall be analysed and transformed into an 
adequate notation which can be automatically translated into 
oracles. For this close contact to potential users is necessary. 
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