
 Dr. Rainer Gerlich BSSE System and Software Engineering, 2019
-1-

Automation of Requirements-based Testing

Ralf Gerlich, Rainer Gerlich

Dr. Rainer Gerlich BSSE System
and Software Engineering

Immenstaad, Germany
Ralf.Gerlich@bsse.biz,

Rainer.Gerlich@bsse.biz

 Maria Hernek
ESA/ESTEC

Noordwijk, The Netherlands

Maria.Hernek@esa.int

Allan Pascoe, Glenn Johnson
SCISYS UK Ltd.

Bristol, UK

Allan.Pascoe@scisys.co.uk,
Glenn.Johnson@scisys.co.uk

Abstract— Manual requirements-based testing is time-
consuming: Input data must cover the requirements and
observed output data must be checked for their compatibility
with the requirements. Testcases can also be automatically
generated from test models. However, these models first have to
be established manually. In contrast, the approach to be
presented here uses simpler ways of formalizing requirements
to automatically map test data generated for automatic
robustness testing using massive stimulation to requirements and
to check the results for correctness.

Keywords: requirements verification, automated software test,
fuzzing, massive stimulation, software verification

I. INTRODUCTION

Fig. I-1 shows the classical approach to requirements
verification using function or unit tests and manually designed
test cases. The source code is written based on the
requirements, and a mapping between functions and
requirements is established manually. Test cases for unit
testing are manually derived from the requirements. Input data
and expected outputs are transformed into test scripts, which
are used to execute the tests and generate a pass/fail verdict.

Fig. I-1: Verification by manually established test cases

II. MODEL-DRIVEN APPROACHES TO REQUIREMENTS
TESTING

In the last few years various approaches for deriving tests
for requirements verification from models have been
proposed. For this, the desired behaviour is modelled and

annotations for determining requirements coverage and
checking of requirements fulfilment are added [1]. Using
random walks or similar methods test sequences and test data
are derived from the models and transformed to test scripts
manually or automatically.

In the ideal case a specification model is available which
can be used for such a method with only few modifications.
Otherwise, a test model needs to be established and verified
against the specification manually – with the latter often only
being present in text form.

A. Automated Robustness Testing

Automated robustness tests – sometimes also referred to
by the term “fuzzing” – are used to test a component for
robustness against unexpected or undesired inputs[2]. The
component is stimulated using, e.g., random data, and the
behaviour of the component is monitored for anomalies
during execution. This may even allow identification of
functional defects in the component. The simple form of test
data generation using random data allows for a high test data
throughput – resulting in massive stimulation.

The results of these tests, however, do not allow for
conclusions about the fulfilment or coverage of requirements.
A mapping from test inputs to requirements is missing.

B. Automated Requirements-based Testing

Automated requirements based testing on source code-
level requires and aims to automatically establish a correlation
between requirements and test cases. At the same time the
mapping between the requirements and the affected functions
in the code needs to be found. Test data shall be automatically
generated and applied, in order to reduce the manual effort
drastically.

The selected approach uses three mappings [3]:

 between input data to requirements (requirements
coverage),

 between requirements and functions, and
 between requirements and oracles.

This principle is shown in Fig. II-1. machine-readable
requirements are integrated with the function test and
evaluated during massive stimulation. This allows
determination of both requirements coverage and fulfilment.
In the case of non-fulfilment the associated test data vector
describes a counter-example.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2019
-2-

Fig. II-1: Principal Approach

Oracles are used for evaluation of requirements fulfilment.
An oracle is an executable procedure which generates a
pass/fail/don’t-know-verdict for a pair of input and observed
output. It is possible for single oracles to only provide definite
results for specific real subsets of the input domain. Ideally all
oracles together cover the whole input domain.

Fig. II-2 shows further details of the automatic approach.
The input space is sampled by a configurable number of
samples, using massive stimulation. The oracles are applied to
each test vector and the resulting verdict is recorded. This
way, counter-examples for non-fulfilment of requirements
can be found.

Fig. II-2: Process Details

Requirements and functions generally form an n:m

relationship. Specific requirements can apply to multiple
functions, such as requirements on numerical accuracy.
Similarly, a single function can implement multiple
requirements or contribute to their implementation.

To map requirements and functions to each other, the
affected elements – data objects, structures, parameters – must
be extracted from the text of the requirement and be associated
to their counterparts in the Code. This can be done using
naming rules which translate names from the requirements to
names in the code – possibly using an identity mapping. This
way oracles can be mapped to functions by concatenating the
relationships of oracles to requirements and requirements to
functions. An elaborate manual mapping can be avoided this
way.

Fig. II-3 illustrates the logical flow in the context of
hierarchical requirements. Top-down requirements should be
detailed down to a level at which they can be transformed into
code. This is the highest level at which oracles can be defined
in a meaningful manner. Requirements on higher level are
usually not suitable for verification by code-level- or unit
tests.

Finally, the mapping from inputs to requirements is used
to determine requirements coverage and to back-trace it
through the different requirement hierarchy levels up to high-
level requirements. This back-tracing is done using the
traceability information provided in the form of “refines”- or
“implements”-relationships between the different levels of
requirements.

C. Massive Stimulation and the Derivation of Test Vectors

For each function a test environment is established
automatically, which stimulates the function using data from
the input domain of parameters – including global
variables[2]. Special cases such as -1 or 0 for integers are
considered specifically. Other methods for targeted coverage
of specific parts of the code are used, such as constraint-based
or other search-based approaches to test data selection. In
addition, invalid values can be injected and parts of the code
can be specifically modified or supplemented, e.g. to simulate
lack of memory and similar conditions.

Interesting test case candidates for generation of
regression test suites are then selected from the massive set of
test inputs. An input may be interesting if it contributes to
requirement or code coverage, elicits exceptional behaviour or
violates the rules implied by an oracle. These suites can also
be re-executed with external test management tools – such as
Cantata or VectorCAST – and their results can be re-
evaluated.

Fig. II-3: Overall Process for Hierarchical Requirements

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2019
-3-

III. THE ORACLE APPROACH

In this approach the oracles are represented as temporal
implications: If Condition A holds for the input before calling
the function, then Condition B must hold for the tuple of input
and output after execution of the function (Fig. III-1).

Fig. III-1: Structure of Oracles

If Condition A is not fulfilled before the function call,
Condition B is not evaluated and the oracle provides don’t
know as result. Here, Condition A is called the pre-condition.

Using this structure a tautology – i.e. an expression that is
always true – can be used as pre-condition. In this case,
Condition B must hold for every test vector. This way, e.g.,
restrictions for the ranges of the results can be expressed.

Using known relations between requirements at different
levels the results can be mapped to higher-level requirements.
This way on each level the functions contributing to positive
or negative verification results can be determined.

Although verification using massive stimulation is based
on a large number of test vectors, the set of these test vectors
is finite after all. Thus a complete analysis of the input space
is usually not possible. However, the number of automatically
generated stimuli usually exceeds by far the number of test
cases providable using manual methods – which is relevant
specifically for finding counter-examples.

A. Examples

Consider as an example an oracle for the square-root-

function. The simple approach 𝑥 ≥ 0 ⇒ √𝑥
ଶ

= 𝑥 would be

mathematically sound. However, it is not applicable where
numerical precision is finite. A correct approach for
normalised floating point values would be 𝑥 ≥ 𝑓௠௜௡

⇒ ฯ
√௫

మ
ି௫

௫
ฯ < 𝜀, where 𝑓௠௜௡ is the smallest normalized

floating-point number. For 0 < 𝑥 < 𝑓௠௜௡ absolute error
limits would have to be used.

An oracle for the abs-function from the C Standard
Library seems even simpler: 𝑥 ∈ 𝑖𝑛𝑡 ⇒ 𝑎𝑏𝑠(𝑥) ≥ 0.

Interestingly the value of abs(INT_MIN) is negative, as
INT_MIN itself cannot be represented as a value of int.

Type ranges are also to be considered in other cases: The

oracle ฯ
ඥ௫మି௫

௫
ฯ < 𝜀 for the square function will produce

many apparent counter-examples, as for many values of 𝑥
squaring them leads to a float-point overflow.

Thus also here – as for many other approaches of
formalising requirements – the possibility of detecting
incomplete and inaccurate requirements is present.

Truth tables, e.g. for system states, can be easily
represented, as Fig. III-2 shows.

Fig. III-2: : Checking System States using Oracles

IV. OPEN ISSUES

A. Requirements Notation

At the moment most requirements are expressed in free
text, which cannot be automatically evaluated. An analysis of
such requirements led to the conclusion of them being
incomplete, ambiguous or inconsistent, and thus not being
applicable for this method. In manual verification, these
shortcomings have to be compensated by creativity.

A pre-requisite for formalisation of requirements is an
adequate notation. This notation can also come in a form more
suitable to the user than the oracle form. However, it has to be
automatically transformable into the oracle notation.
Requirements presented in a formalised table structure are
convenient for this.

As far as functional aspects of a software system go, there
are a number of approaches to choose from for formalising
requirements, such as Abstract State Machines[4], a
generalisation of Finite State Machines, Petri Nets, or
operation contracts in the form of pre- and post-conditions, to
name just a few. Logical foundations can be found in temporal
logic, with linear temporal logic being one of the most
prominent variants due its use in model checking.

Sequence-based specifications[1][5] describe the
behaviour of the system in terms of stimuli and the resulting
responses, but also come with a concept of determining such
specifications by enumerating possible stimulus-response
sequences from existing preliminary or finalised requirements
documents, reducing them to a finite description at the desired
level of detail.

Although the domain of non-functional aspects is much
larger, important concepts such as timing can be introduced in
many of these models using appropriate annotations, such as
for response-times or maximum buffer sizes.

These approaches describe the theoretical foundations
which are at the base of the respective form of description.

 Dr. Rainer Gerlich BSSE System and Software Engineering, 2019
-4-

While the underlying theory guides both the required semantic
content as well as its basic structure, it is possible to choose
from various forms of presentation. For example, abstract
state machines can be represented in a graphical manner – as
long as a semantical model is stored in parallel –, in the form
of state-transition tables or as pre- and post-conditions
establishing the relationship between source- and target-states
of any transition.

Care must be taken when specification models specify
features that are not explicitly present in the final software.
One example might be a specification using finite state
machines, without there being a variable in the software
explicitly representing the current state from the state
machine. Instead, the state may be implicit in that some
sequences of operations simply would lead to undesired
results. In such a case, abstract state machines making the
preconditions of operations explicit may be a more useful
modelling tool.

On a conceptual level, the idea of formalising software
requirements and design is not very different from specifying,
e.g., control systems. Here the underlying system dynamics is
formally described using differential equations or process
graphs and the requirements can be defined in terms of the
desired dynamic properties of the controlled system. The use
of such concepts is quite well-established in the specification,
design, verification and validation of control algorithms.

While it might not be possible to express all aspects of a
software system in a formal way, there is a plethora of
methods to chose from.

B. Quality Assurance of Oracles

Like any other code, also oracles are subject to quality
assurance. Mistakes in oracles could otherwise lead to
overlooking possibly critical software faults. As each oracle
can be applied to large subsets of the input domain, it is even
possible for faults with huge impact to be overlooked if the
oracle is incorrect. A similar risk exists in manual testing,

albeit for a different reason, namely not considering relevant
test cases in the first place or constructing the expected
output in an incorrect manner.

V. OUTLOOK AND FUTURE WORK

As no machine-readable requirements were available, the
current implementation is based on oracles manually
implemented in C, with the aim of showing feasibility and
advantages.

In future work a more abstract form shall be identified
which is also more acceptable to users. For this, text-based
requirements shall be analysed and transformed into an
adequate notation which can be automatically translated into
oracles. For this close contact to potential users is necessary.

ACKNOWLEDGMENT

The research presented here is supported by grant DLR-
50PS1601 of the Space Administration of the German
Aerospace Center (DLR) on behalf of the German Ministry of
Economics and Energy (BMWi).

REFERENCES
[1] H.-J. Herpel, G. Willich, J. Li, J. Xie, B. Johansen, K. Kvinnesland,

S. Krueger, P. Barrios: “MATTS – A step towards Model Based
Testing”, Eurospace Symposium DASIA’2016 “DAta Systems in
Aerospace”, May 10th-12th, 2016, Tallinn, Estonia.

[2] R. Gerlich, R. Gerlich, M. Prochazka, K. Kvinnesland, B. Johansen:
“A Case Study on Automated Source-Code-Based Testing Methods”,
Eurospace Symposium DASIA’2013 “DAta Systems in Aerospace”,
May 14th-16th, 2013, Porto, Portugal.

[3] R. Gerlich, R. Gerlich, M. Hernek, J. Ramachandran, A. Pascoe, G.
Johnson: “Challenges Regarding Automation of Requirements-based
Testing”, Eurospace Symposium DASIA’2017 “DAta Systems in
Aerospace”, May 30th – June 1st, 2017, Gothenborg, Sweden.

[4] E. Börger, R. Stärk: „Abstract State Machines: A Method for High-
Level System Design and Analysis”, Springer, 2003.

[5] S. J. Prowell: “Sequence-Based Software Specification”, Dissertation,
University of Tennessee, Knoxville, 1996.

