
BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Evaluation of Auto-Test Generation Strategies and Platforms

Ralf Gerlich (1), Rainer Gerlich (2), Thomas Boll (2), Johannes Mayer (3)

(1) University of Ulm, 89069 Ulm, Germany, co-located at BSSE,
e-mail: Ralf.Gerlich@bsse.biz

(2) BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659,

Fax +49/7545/91.12.40, e-mail: Rainer.Gerlich@bsse.biz, Thomas.Boll@bsse.biz,
URL: http://www.bsse.biz

(3) Ulm University, Inst. of Applied Information Processing, Helmholtzstr. 18, 89069 Ulm , Germany,
Phone +49/731/50-23573, Fax +49/731/50-23975, e-mail: johannes.mayer@uni-ulm.de

URL: http://www.mathematik.uni-ulm.de/sai/mayer/

ABSTRACT:
As the test effort takes a significant part of the software
development lifecycle, efficient test strategies are a pre-
condition for reduction of development costs and time.
In this respect two main issues exist: firstly, the tuning
of the test track from test case identification to
evaluation, secondly, the reduction of number of test
cases to be processed and evaluated. Both aspects were
considered in the work presented in this paper.

For reduction of the effort related to the test track two
test automation tools have been applied: DCRTT for C
and SmartG for Java. While DCRTT is ready for
industrial use at high degree of automation of all test
steps, SmartG is a prototype exploiting the identifcation
of path sets by random testing. DCRTT only requires
provision of the source files and then delivers test
drivers, a filtered and reduced set of test cases, related
test results and detailed information on data ranges and
observed exceptions. The manual effort is reduced to
test evaluation.

DCRTT identifies a significantly reduced set of test
cases left for manual evaluation. The selection criteria
are based on block coverage, decision coverage and
occurrence of exceptions when generating inputs from
the valid and invalid data range. One or more test cases
may be collected for each basket of such a criterion and
element of a function’s structure.

It is of high importance how well such automated
strategies do work. Therefore a number of investigations
have been performed, evaluating the achieved coverage
and number of reported exceptions. Three test modes
have been considered: random and lattice-based test
generation for module testing and operational testing
imposing the complete main program to representative
operational conditions.

The practical findings are evaluated against theoretical
considerations.

1 INTRODUCTION
The manual selection of proper test cases for detection
of faults is a challenging task. The input domain is
unstructured and usually very large. By the structure of
the source code it is divided into sub-domains reflecting
the program’s logic, forming “equivalence classes”
regarding the test goals.

Therefore a subset of the full set of test cases
(“optimised reduced test set”) is sufficient for fault
identification. However, the reduction of the full set to a
reduced set remains unknown to the developer or tester
due to the complexity of the mapping. This may lead to
inefficient test case selection and an insufficient number
of test cases.

Test case definition based on a specification (“black box
testing”) does not consider a program’s structure and
extensions needed for implementation. A limited
number of test cases derived from a program’s structure
may not consider all what is addressed by a
specification.

The considered approach is based on the following
conclusions: when applying a representative set of test
cases, i.e. a reduced but sufficient test set, derived from
the implementation, "the code", all the properties as
required by the specification should be made visible, but
also the non-compliances.

For realisation of this concept automated test generation
is applied in order to identify a proper subset, taking the
implemented software as information source. In
practice, this means to consider prototypes
(declarations) of subprograms (like C functions) and

mailto:Ralf.Gerlich@bsse.biz
mailto:Rainer.Gerlich@bsse.biz
http://www.bsse.biz/
mailto:johannes.mayer@uni-ulm.de

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

related type definitions. This is sufficient to build a
complete test environment for each of the functions
included in a set of source files without manual
intervention.

The automated test generation does reduce the manual
effort needed to identify, run and evaluate the test cases,
when identifying test cases of interest out of a large
input domain. Such auto-generation and selection of test
cases is based on a chosen strategy. But what is the best
strategy? There are a number of questions regarding the
efficiency of hitting faults: what is the most efficient
strategy, do different strategies complement each other
or does one exist which is the best, and which manual
effort remains at the end?

Besides the algorithms applied to identification of test
cases of interest, more parameters may impact the
decision whether to select a test case or not – a result
which was found during recent exercises on auto-testing.

Surprisingly, it turned out that a compiler may generate
code which does not allow identification of critical
cases. Of course, this is not a specific disadvantage of
auto-testing, it is a matter of test execution in general,
but recognised when running the auto-testing tool on
different platforms. This observation leads to the
recommendation to exploit test results on different
compilers in order not to miss such a test case. If the test
environments are built by a test tool, no manual effort is
required – except for result evaluation.

Coverage in its various forms is considered as an
essential criterion for acceptance of tests, as it is a
metric on which part of the software has ever been
executed.

Not surprisingly, because frequently applied, is
compromising test representativity by selecting one test
case only to fulfil each element of a coverage criterion,
e.g. a single statement in case of statement coverage.
One test case is not sufficient in most cases. When a
block contains a polynomial of degree n, n+1 samples ≡
test cases are needed, at least, to be sure that the
implemented algorithm meets the specification. The
reduction to one test case per block is not adequate at all
and seems to be imposed by the limited human
resources. In case of auto-test generation this problem
does no longer exist.

Similarly, the restriction of coverage analysis to block or
statement coverage, but not to decision coverage
compromises the representativity of tests regarding later
operations.

Exceptions are indicators for critical code sections. No
exception should occur at all for high quality software.

When stimulated by valid data1, obviously no exception
should be propagated to operating system (OS) level
causing program abortion. Being stimulated by invalid
data, also no exception should be propagated to the OS
level, as quality software should protect itself against
inadvertent data.

On module testing level, focusing on a Function-Under-
Test (FUT) only, expected (anticipated) exceptions,
such as “file not found”, may propagate outside an FUT,
because they may be handled on a higher level. In this
case, it needs to be checked whether the reported
occurrence of an exception is anticipated and handled or
not.

Consequently, an exception observed during the auto-
tests may indicate a problem. Unfortunately, experience
shows that many unhandled exceptions are raised when
software is exposed to auto-testing, only being tested
manually before. This has also been observed in [1,14].

Sufficient coverage is a pre-condition for fault
identification. If coverage of a certain part of source
code is zero, there is no chance to detect a fault in this
area. However, it is not sufficient to know that coverage
is zero, but information is needed how to move to
sufficient coverage.

By sampling the code by a high number of test cases and
by applying filtering criteria, auto-testing can guide to
find the test cases needed for sufficient coverage and
result evaluation.

The paper is organized as follows: Section 2 gives an
overview of the approach and its employed methods.
Related work is also discussed. Section 3 is dedicated to
a description of the tools implementing the approach.
The results of case studies are thereafter presented and
discussed in Section 4. Conclusions are given in Section
5.

2 STRATEGIES FOR TEST GENERATION

2.1 Theoretical Foundations
Random testing is a well-known and often used strategy
[15]. Thereby, test data is randomly selected from the
input domain. Based on this approach and the
assumption that failure-causing input appear somewhat
clustered within the input domain, Chen et al. [16] have

1 E.g. for the sqrt-function for real (float) data, negative
values are considered as invalid. In general, the valid range
depends on the applied algorithms. In Ada a valid range can
be more precisely defined by introduction of user-defined
types with adequate ranges. In C or Java this is not possible.
Then the algorithms must be protected by explicit range
checks (“guards”) against invalid data.

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

proposed "Adaptive Random Testing" (ART) which
evenly spreads the test cases within the input domain. In
many situations, ART is more effective than pure
random testing. A special implementation of the idea of
ART is provided by Latticed-Based Adaptive Random
Testing (LART) [17]. LART selects test data from a
dynamically refined lattice structure imposed on the
input domain. In order to retain the advantage of
randomness, the lattice points are selected in random
order and their position is randomly translated by a
small amount. LART has been shown to select only
about half as much test cases as D-ART [16] does (in
order to detect the first failure). This is quite close to the
theoretical optimum of 50% of the number of test cases
of random testing [18]. Besides those ART approaches,
it has been shown that a partition testing strategy that
randomly selects test cases from partitions such that the
number of test cases related to the number of elements is
equal for all partitions can outperform random testing in
every case [19].

2.2 Similar Approaches
Recently (in 2006 and 2007), two papers have been
published [1, 2] also discussing strategies for better fault
identification and suggesting or applying auto-testing.
DART [1] is based on a combination of symbolic
reasoning and random testing. In [2], information gained
through the execution of randomly generated test data is
used in order to guide the selection of further test cases.
Both approaches enhance random test data generation in
order to be more effective. Another approach that starts
with random test data and uses feedback gained through
executions is search-based testing [20], which has e.g.
successfully been applied in order to automatically
generate test data fulfilling certain coverage criteria.

2.3 Applied Strategies
The issues of (auto-)testing can be divided into four
categories as shown in Fig. 2-1:

Fig. 2-1: Issues of Auto-Testing

! Languages

! Test platforms (compiler)

! Test evaluation and acceptance criteria

! Test generation modes.

2.3.1 Languages
C and Java are considered as supported languages by the
applied tools DCRTT and SmartG (Tab. 2-1). Some
figures from previous Ada auto-testing with the DARTT
tool [6,7,8,9] are also presented.

Languages

C Ada Java

Tool DCRTT DARTT SmartG

Tab. 2-1: Tools vs. Supported Languages

2.3.2 Platforms
The VC++ (V7, .NET) and gcc (V3.2.3) have been used
on an MS-Windows XP-platform to compile and link
the generated test environments.

2.3.3 Coverage
During test execution the impact on the code is
measured, for which up to four properties are recorded:

! Block coverage

! Decision coverage

! Path set coverage

! Occurrence of exceptions.

Tab. 2-1 gives an overview on which property is
supported for which language.

Languages
Coverage

C Ada Java
Block + +

Exception + +
Decision +
Path Set +

Tab. 2-2: Languages vs. Coverage Support

Block coverage is identical with statement coverage if
no exceptions occur in the block and no unconditional
branching statement (exit, return, goto) is executed.

A path set consists of a subset of paths which can be
traversed while executing the code under test. A path set
is said to be covered by a test case if a path from the
path set is traversed when stimulating the code under
test with the inputs from the test case.

Languages

Java

C

Ada

Test Modes

Lattice

Random

Operational

Platforms

VC++
gcc Aonix

GNAT

Coverage

ExceptBlock
Statement

Decision Path
Class

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

A path set can be described by annotated code
constructed from the original code by use of equivalence
transformations and constraint annotations. The
constraint annotations limit the possible state of the
program – i.e. the values which may occur in its
variables – and thereby also the choices possible at
decision points in the program.

Thereby the set of allowed inputs is constrained. As
each input tuple is associated with exactly one path
through the program – not vice versa, as traversal of a
single path can result from different input tuples – the
constraints can be used to also limit the set of possible
paths.

2.3.4 Test Generation Modes
A number of test modes have been applied to generation
of test cases. Coverage criteria were used to filter test
cases of interest for manual evaluation out of the huge
number of auto-generated test cases.

The overall strategy to find test cases of interest is
divided into two sub-strategies

• a strategy for auto-generation of (a large
number of) test cases, and

• a strategy for identification and filtering of test
cases of interest, intended to re-run in a
simplified environment, on the development or
target system, for auto-checking of previous and
current results in case of regression testing and
for manual evaluation.

A number of strategies were exploited for test
generation:

• random-based testing

• systematic testing

! lattice-based testing

! code-analysis-based testing

! constraint-based testing

• operations-based testing including rule-based
testing.

Languages
Test Mode

C Ada Java
Random + + +
Lattice + +

Operational +

Tab. 2-3: Languages vs. Supported Test Modes

Tab. 2-3 shows which test mode is (currently)
supported for which language.

Random-based and systematic testing address the level
“module testing”. In the auto-testing approach these
modes directly stimulate subprograms (or functions)
based on the prototype definition. Operations-based
testing means normal operation of the program as it
happens during integration and system level testing or
later user operations. Rule-based testing is a mix
between auto-testing and operational testing: based on a
(formal) specification of the expected input to the main
program, test data are randomly generated.

The intention of “operations-based testing” is to catch
test cases which were missed during auto-testing on
module level.

In case of random testing (pseudo) random numbers are
generated a given range.

In case of lattice-based testing the given range is divided
into equidistant intervals by a user-defined number of
sampling points. For large ranges such as in C long int,
long long int, float, double, long double, it is unlikely to
hit a reasonable small “value” in a range below 10,000
or 100,000 (except for 0). Therefore the equidistant
distribution is slightly modified for such large ranges.
For a user-defined portion of the range, equidistant steps
are defined based on a linear scale, while above this
limit a logarithmic scale is used. This allows to hit
reasonable small values, but also to cover the borders of
a type's range (type'first and type'last).

For composite types like structures or arrays, the
derivation of values is applied to each component.

While for random-based test cases conditions like
“a==b” are difficult to hit when values are randomly
generated for a and b, latticed-based test generation
inherently meets such conditions if a and b of same type
(which should always be true from a principal point of
view).

While in Ada a user-defined type can be restricted in
range, in C, C++ or Java a new type cannot get an own
range. Therefore, it is likely that in C always the full
range of the base type applies. In order to provide a
similar feature like in Ada, a limitation of ranges for
user-defined types is supported by DCRTT. The
restricted ranges have to be defined separately.

Code-analysis-based testing is an approach derived from
practical observations aiming to increase coverage by
values used in the code. The source code is analysed for
literals (constants, numerics, strings, enumeration
values) which are used in conditional expressions. When
fed in the related condition is hit and a block can be
entered which may not reached by random- or lattice-
based test cases.

For such literals not only the identified value is taken,
but another value which yields the opposite result of

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

condition evaluation. E.g. in case of “a==100” two
values are added: “100” yielding TRUE and another
value fulfilling the condition “a!=100”. In addition, for
strings and pointers NULL is always added to the set of
test cases, and an empty string for string types.

Constraint-based testing aims to apply general-purpose
constraint solving mechanisms to select test inputs. In
contrast to code-analysis-based testing more
computationally complex analysis and deduction is
applied to find test inputs required for a given coverage
criterion. It is to be used as a last-ditch effort when the
other, less complex methods (lattice-, random- and
operations-based testing) do not find test inputs to reach
non-covered blocks.

To optimise the results of test generation, the different
test generation modes for “module testing” (random-,
lattice-, code-analysis- and constraint-based) may be
combined amongst each other, and random- and lattice-
based module testing may be combined with operational
testing.

Subprogram parameters and global data which impact
branching are subject of stimulation during “module
testing”, while in operational mode the user "stimulates"
the program.

In case a limited type range is defined, test cases may be
selected from the valid range only, or out of the valid
and invalid range. For usual C type ranges, no visible
“invalid type range” exists, in fact. The invalid range is
implicitly defined by the internals of a function. If not
properly protected, exceptions may be raised when
exceeding the non-visible valid range.

2.3.5 Test Evaluation Criteria
Automated test generation and execution produces a
huge number of test vectors: input and output data ("test
vectors") and exceptions. In addition, from the point of
view of test execution deadlocks, livelocks and aborts
provide further information on unsuccessful test
execution. While these anomalies are easy to capture in
an automatic manner, the test vectors still need to be
analysed manually for fault detection or for proof of
correctness.

Therefore the applied strategy aims to reduce the huge
number of auto-generated test cases to such ones of
"interest", ending up with a significantly reduced
number of test cases.

As coverage of a block or branch is a pre-condition of
fault-detection, use of coverage criteria seems to be a
proper strategy to identify test cases suited for manual
evaluation.

Following coverage criteria guide the selection of
"interesting test cases":

! Block coverage

! Decision coverage (both boolean conditions)

! Occurrence of exceptions.

Later, the path set coverage criterion [3] also shall be
considered.

For all three criteria (block and decision coverage,
exceptions) test cases are collected in a basket. A basket
may contain a number of test cases up to a user-defined
limit. It is common practice to use 1 for this limit,
which however is considered as insufficient. Whenever a
block is entered or a condition is met a test case is put
into the basket unless the given limit is reached. In
addition, there is not only a basket for a positive
condition, but also for the negative / opposite condition.
In case of an “if” or “else if “ there are two baskets for
“TRUE” and “FALSE”, for a “switch” there are baskets
for each “case” and “default” (even if “default” does not
occur in the code).

Whenever a block is entered or a decision evaluates to
true or false while the related basket is not full, a test
case is considered as "interesting". Any test case causing
an exception is also considered as "interesting".

At the end of the test a test driver is generated: for each
such case a function is defined which executes one of
these test cases. The complete set is called from the
main program.

The benefit of this procuedure is that the test cases are
minimised according to a function's internal structure,
while black-box testing may lead to test cases leading to
an unbalanced coverage, thereby wasting manual effort.

Each function sets the input variables prior to the test
step, calls the FUT, compares the output with the
expected output as observed during the previous auto-
test run, checks whether the expected or an unexpected
exception occurred. Any non-compliance is reported,
including composite data.

The test driver has a simple code structure, but may be
large, depending on the identified test cases of interest.
It can be executed at whole or in part on the intended
target system, where the CPU and memory resources
may be very limited.

Once the test vectors have been verified by manual
inspection, this test driver may be used for regression
testing, then automatically identifying potential changes
after maintenance or compliance with previous results.

By a DCRTT option the test driver will be instrumented
for integration with Cantata++ [11] from IPL.

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

3 THE TEST ENVIRONMENT

3.1 The Test Tools
The used tool DCRTT [4] is based on activities in auto-
testing started in 1993 [5] for testing of Ada source code
resulting in the development of the DARTT tool [6].
Based on experience-in-the-large with DARTT [7,8,9]
DCRTT, was developed for C. Due to the previous
experience and user requests, DCRTT provides much
more features now like code-analysis-based testing,
operational testing, test case filtering, support for
MCDC evaluation (Modified Condition Decision
Coverage), classification of filtered test cases like
known from the test classification method (CTM,
Classification Tree Method) [10].

If a commercial issue comes up, DARTT will also be
raised to this support level.

SMARTG, a prototype tool combining random and
constraint-based test case selection for generic path set
coverage for Java, is a result of efforts on the definition
and analysis of the path set coverage criterion. It
supports stimulation of static Java methods with
primitive types and arrays thereof as parameter types.

The generic coverage criterion used is based on path
sets.

This criterion allows the use of a large scope of different
coverage rules. Such rules can target typical
programming errors, but also parts of the specification
can be rewritten as construction rules or even specific
path sets. Taking as an example a condition which
according to the specification must not occur during
execution, an interesting path set could be constructed
by constraining the state of the system at some point of
execution so that the condition must occur. Non-
coverage of this path set would then indicate that the
system correctly implements this part of the
specification as no inputs can be found which trigger the
forbidden condition.

The experiments on auto-testing mainly concentrate on
DCRTT, applied to more complex software, while
SmartG as a prototype was only applied to some typical
examples to demonstrate the feasibilty of this approach.
3.2 Implementation

3.2.1 DCRTT
DCRTT implements the strategies as described in 2.3.4
and 2.3.5 above. Generation of the needed test
environment, instrumentation of the code, recording of
test vectors and auto-documentation, generation of the
test drivers for filtered test cases, and generation of
batch-files for control of execution can be handled for

any C (ANSI) source code including arbitrary user-
defined types and functions.

In most cases, it is sufficient just to provide the set of
source files, to start a batch-file (without parameters)
and to wait until completion.

The test driver for the filtered test cases is established as
independent C program. For each test case a function is
built which defines the input values (for every user-
defined type), calls the Function-Under-Test, evaluates
the test results by comparing the data values by the
values obtained in the run for filtering and the observed
exceptions for exception type and location (file and line
number).

Without instrumentation options an execution time
profile can be derived in addition.

The test driver can be compiled with an option for
integration with Cantata++ [11]. In this case the
Cantata++ run-time environment is activated and all
features for test analysis are available, including the
features for checking of results and coverage analysis
and other reporting features.

Each file and each function respectively is instrumented
automatically for recording of block and decision
coverage, exception capture, and – optionally -
monitoring of data values at each location a variable is
used. If a limited type range is defined, exceeding of the
range is reported.

In case of operational testing all functions or as desired
are instrumented, and the observed properties are
recorded in parallel.

3.2.2 SmartG
In the SMARTG tool, random test case generation is
applied in the first step, filling coverage gaps using
constraint-based techniques. This strategy aims to
reduce the cases where the computationally expensive
constraint solving mechanisms have to be applied.

The SMARTG tool applies the novel concept of
coverage named "path sets". The same “generate-first,
filter last”-approach is applied as with DARTT/DCRTT,
using the same bucket concept. Test case buckets are
defined for each path set, for a specifiable exception
classification and for execution timeouts.

3.3 Managing Auto-Testing
For test evaluation a feedback from the code is needed,
for recording of test vectors, coverage, exceptions and
data values. Of course, this impacts execution time and
real-time properties.

If real-time execution is of relevance, a staggered
approach needs to be applied minimising the

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

disturbance. This is a matter mostly of operational
testing, but not of module testing.

For testability reasons always a time slot should be
reserved for overhead induced by test instrumentation,
otherwise the software would not be testable. Then it
should be possible to activate slicewise the
instrumentation, for one function only or a subset of
functions as compliant with the execution time margin.

If full instrumentation is needed, a capture-replay
approach is proposed: recording of input data under
operational conditions in a first step, having activated
the instrumentation only for recording of these data.
Then in a second step these data are replayed and the
system is executed with full instrumentation, but time-
triggered by the events of data provision.

This approach is feasible for “synchronous systems”
which are broadly implemented in the embedded
domain. In this case a clock drives execution, but the

results do not really depend on the period (provided it is
longer than the “worst-case execution time”). Even, it
the clock is stopped and then running again, there is no
impact. It is even possible, to run different execution
chains and to model time jitter between the clocks.

The feature of capture-replay is currently in preparation
for DCRTT.

3.4 Test Strategies
It is expected that interesting test cases cannot be
collected by one of the auto-testing modes only. As will
be discussed later, missing context information on the
valid data range may not allow to optimise test
generation towards high coverage in lattice- and/or
random-based mode. Therefore a combination of several
test strategies is suggested.

In case of few context information lattice- and random-
based mode may only address robustness of the software
under test, when many test cases outside the intended
data range are produced. In this case these test modes
can efficiently be complemented by operational testing.

In this test mode all the features for recording of

coverage and exceptions are kept like in the other test
modes, and the overall coverage can be cumulated from
one test mode to the next one.

Fig. 2-1 explains this strategy.

Fig. 3-1: Suggested Test Strategy
Between all these steps the contents of a basket can be
inherited, so that only additional values are collected in
a following step. However, if desired a basket may also
be emptied prior to test execution, e.g. to investigate
which type of test cases are identified in a certain test
mode.

Firstly, lattice-based testing enriched by additional
literals is performed, followed by random-based testing
extended by literals, too. Finally, the software-under-test

is executed under operational conditions and
instrumentation of the code.

The reasons for this sequence are:

Lattice-based testing tends to prefer data from the lower
range. E.g. if the maximum volume of the basket is one
test case only, it is likely that it will lie in the lower
range, when the first observed test case is chosen. As it
is unknown whether another test case will follow at all,

cumulated

Coverage
Filtered Test Cases + Independent (Target) Test Driver

Lattice-based

1 .. n

low range

n=1

Generator

Rules

+

Operational-based

1 .. k

ops range

k≥1

+

1 .. m

full range

m≥1

Random-based

+

1 .. j

full range

j≥1

Path-set-
based

Constraint-
AnalysisType Range

Auto-Testing

Application-independent Application-dependent

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

the first one cannot be dropped. If more than one test
case is allowed, it is likely to get a cluster in the lower
range. Therefore it is recommended to run lattice-based
testing with a small basket size only. But it should be the
"starter" because it is more likely that in this mode more
test cases can be found (see the conclusions below).

Test cases are better distributed across the input domain
for random-based testing. Therefore in this mode a
larger basket is recommended, to capture more test cases
over the full range.

This is also the case for testing under operational
conditions, though the effective range may be smaller
than in case of lattice- and random-based testing.

Constraint-based testing for path set coverage should be
applied after lattice- and random-based test modes. It
may even be moved after the end of operational testing.
There is a simple reason for this sequence: constraint-
solving is time consuming, therefore it should be limited
to such code only, which cannot be reached by the other
test modes. Current experience shows that a coverage of
70% percent can easily be achieved by these test modes.
Consequently, the time consuming processing only
needs to be applied to 1/3 of the software, or possibly
less.

In addition, constraint-based testing may introduce an
unwanted bias due to the direct specification of path sets
brought in from the outside.

Operational testing is also of interest – even if a
sufficient number of interesting test cases would have
been collected already – to monitor coverage under such
conditions – possibly during separate test execution –
and the actual range of the variables.

3.5 Some Issues of Practical Auto-Testing
By analysis of the C base types and user-defined types it
is rather straightforward (but still challenging) to
generate input data, except for one case: passing of
pointers.

If a pointer is passed to a function, concrete data have to
be declared outside the function. However, in C any
information is missing about the size of the pointer,
unless an intelligent parsing of the code is done, which
can be rather complex and even infeasible in practice in
a general manner.

Therefore DCRTT needs to make an assumption on the
size, based on user-provided information. DCRTT
resolves this ambiguity by allocating an array to each
such variable thereby removing one level of pointer or
array from the type definition. This happens recursively
for each such level. As DCRTT is fully controlling the
test environment, all the code remains consistent.

In case of operational testing DCRTT cannot control
creation of the environment, data even may be allocated
dynamically with varying size. Therefore DCRTT
makes the assumption that the size of the memory
allocated to such a pointer only amounts to one element
of the related type. This impacts only recording of data
values.

4 SOFTWARE UNDER TEST
To exploit the test strategies DCRTT and SmartG have
been applied to a set of software packages.

Any later conclusions on test results do only relate to the
reference set of tested functions.

The tests have been executed on two compilers on an
XP-platform: VC++ V7/.NET and gcc 3.2.3.

4.1 DCRTT
For exploitation of the test modes the following software
packages have been used:

• A specific set of functions used for DCRTT
testing, targeting general, specific and critical
aspects of the C language w.r.t. generation of an
auto-testing environment, in particular
regarding the user-defined types. Currently,
there is a set of about 150 functions which are
provided with the DCRTT installation. When
the test were executed, the number of test
functions amounted to 142.

• Two program packages of “foreign” source
code from the Open-Source domain (oSIP and
flex), considered as sufficiently representative
and complex software. In particular, the nature
of this software required full scanning of a large
set of included compiler h-files, including about
4000 function and type definitions, each, and up
to about additional 100 KLOC.
Open source software has been considered
because everybody may access this software
and rerun the tests.

4.2 SmartG
SMARTG comes also with its own set of benchmark
functions which are specifically addressing path set
coverage based on a typical rule set. Additionally a set
of methods implementing algorithms from the domain of
computational geometry were tested.

4.3 Overview on Tested Functions
The oSIP package (GNU open software for the Session
Initiation Protocol) [12] has been selected because it
was also used in [1].

Flex (Fast LEXical analyser generator) [13].has been
selected because it is considered as a representative

BSSE System and Software Engineering

 Copyright Rainer

complex application, for which rule-based auto-test
generation can be applied.

Tab. 4-1 shows the some figures characterising the size
and the complexity of the test packages. "LOC" means
"source lines without comment and blank lines", a block
is either enclosed by "{ }" or a sequencing of statements
following a branching condition like "if", "switch",
"case", loop constructs. A "decision item" is a simple

expression evaluating to a boolean value in a branching
condition.

Functions LOC Blocks Decisions
DCRTT 142 3862 865 938

flex 189 12452 2397 2871
oSIP 655 19368 3402 5227

Tab. 4-1: Test Package Characteristics
A summary feedback from the DCRTT tests is given in
Fig. 4-1 and Fig. 4-2.

C o verag e vs. L OC s[%]
 Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Fig. 4-1: Coverage vs. Software Categories

Fig. 4-2: Locks, Aborts and Exceptions vs. Software Categories

0

20

40

60

80

100

120

1000 10000 100000 1000000L O Cs

C-B loc k c overage
A da-B loc k c overage
C-Dec is ion Coverage

Exceptions + Aborts vs. LOCs

0

10

20

30

40

50

60

70

1000 10000 100000 1000LOCs

[%]

C-Excptions per Test case
Ada-Exceptions per Test case
C-Functions with Exceptions
Ada-Functions with Exceptions
C-Aborts
Ada-Aborts

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

For comparison, these figures also show results obtained
during previous DARTT tests [8,9]. Fig. 4-1 shows for
C and Ada software the coverage achieved by lattice-
based testing vs. LOC.

The results from DCRTT test suite yielded high
coverage. These tests may be considered as a singular
case because they specifically address the aspects of
auto-testing. The reason why 100% coverage was not
achieved is simply that functions are included which
address unreachable code and exceptions.

For open source software only low coverage was
achieved, because context information could not be
found in the code which can guide auto-testing to find
the test cases of interest. It is a weakness of C that it
does not enforce provision of such information like on
type ranges.

This is different for Ada and consequently higher
coverage was achieved for two different packages. It is
also obvious that for high integrity software as is "Cat.
A" coverage is higher than for software of lower
category "Cat. C". The more defensive character of Cat.
A software and the more rigorous standards seem to
enforce provision of information needed to tune auto-
test generation.

Fig. 4-2 shows the number of observed deadlocks,
livelocks and aborts during lattice-based testing. It is
obvious that the more context information on valid data
ranges can be found in the code, the less anomalies were
observed. In case of oSIP more than 50% of the
functions were aborted due to such anomalies. Therefore
it was decided not to evaluate this software in more
detail.

The decrease of number of functions with exceptions
and of the percentage of exceptions is a consequence of
the high abort rate, and does not imply any conclusion
on a better programming style preventing exceptions.

5 DCRTT TEST RESULTS
The test results have been analysed for coverage figures,
observed exceptions and platform dependencies causing
differences in test results,

5.1 Coverage

5.1.1 Module Testing

5.1.1.1 DCRTT Test Functions
The set of functions consists of 865 blocks and 938
decisions (see Tab. 4-1). The following table Tab. 5-1
shows the results of lattice- and random-based testing
extended by code-analysis-based testing.

For decision coverage two further rows provide
information on the coverage of the “true” and “false”
branches of a logical item. A value less than 100%
indicates that not in all cases the “THEN” or “ELSE”
branch was reached.

Latticed-based testing gives slightly better results than
random-based testing. It can be expected that worse
results will be achieved when the literal test cases are
omitted found by code analysis.

Coverage / %DCRTT
Test Suite

142 functions
Lattice Random

Coverage Type VC++ gcc VC++ gcc
Block 91.10 92.6 85.20 85.20
Decision 96.70 97.10 91.90 91.90

true 90.74 93.20 83.53 83.53
false 96.14 96.16 94.90 94.90

Tab. 5-1: Coverage Figures for DCRTT Test Suite

It was not expected that the figures for random testing
nearly reach such of lattice-based testing. An analysis
showed that due to use of literals (found from code
analysis) also the cases “a==b” were hit which is very
unlikely for random testing. As “0” is always considered
as a specific test case, it helped to meet “a==b”.
Therefore additional conditions were added like “a==b
&& a!=0” in order not to make it too simple to fulfill
such conditions.

The “decision”-row shows the percentage that a block
following a decision could be entered. The “TRUE” and
“FALSE” rows give the figures on how often a
condition evaluated to TRUE or FALSE. As a decision
may be based on the evaluation of several conditions
and due to “short circuit code” evaluation of conditions
may be dropped when the result will not be changed, the
coverage of all conditions is lower than the coverage of
the “parent expressions”.

Full MC/DC (Modified Conditional Decision Coverage)
is achieved when for TRUE and FALSE 100% are
reached.

It needs to be mentioned that a number of blocks are
included which never can be reached because such cases
were added for demonstration purposes.

Also, exceptions – when occurring systematically –
prevent execution of the following blocks, thereby
decreasing coverage. Consequently, comparison of
coverage figures requires absence of exceptions.

For this set of test functions it can be assumed that
100% coverage of the blocks and decisions which can
be reached has been achieved. In consequence, the fact
that 100% could not be reached indicates (built-in)
problems in the code, either dead code or exceptions.

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

5.1.1.2 oSIP
The results obtained for the oSIP software are shown in
Tab. 5-2. Tests have only be executed for the gcc
compiler and for lattice-based testing. After evaluation
of these first results and recognition of the high number
of anomalies further evaluation was dropped.

As already discussed the figures may not be considered
as reliable due to potential corruption of coverage
information and high abort rate, because in case of
aborts no coverage information can be collected.

Coverage / %oSIP

655 functions Lattice Random

Coverage Type VC++ gcc VC++ gcc
Block 12.64 ??
Decision 12.42 ??

true 34.52 ??
false 85.98 ??

Tab. 5-2: Coverage Figures for oSIP

5.1.1.3 flex
The results for tests of the flex software are shown in
Tab. 5-3.

In this table the dependencies of coverage figures on
compilers are evaluated for each test mode. An
explanation of the higher values for gcc is, that less
exceptions were produced (see sect. 0), which resulted
in more executed blocks and decisions because the
control flow was not interrupted. As will be discussed
later, this does not imply an advantage for gcc, because
the results of execution may be wrong.

Also, it has to be mentioned that the crashes of a FUT
may cause corruption of coverage figures, maintained in
memory. This was recognised by values which seemd to
be too low. Further investigation showed that the run-
time system may be corrupted by the FUT such that the
contents cannot be saved to file. This causes loss of
cumulated coverage up to the time of corruption.

Measures were undertaken to prevent loss of such
information, but the more protections were added, the

more complex remaining conditions were identified.
This process of improvement of self-protection against
corruption of the run-time system by the FUT due to
invalid operations is not yet finished. This is the reason
why for the combination of lattice- and random-based
testing no valid figures can be presented for VC++.

Coverage / %flex

189 functions Lattice Random

Coverage Type VC++ gcc VC++ gcc
Block 15.28 17.15 15.20 16.44
Decision 16.75 21.25 18.01 19.33

true 56.97 58.85 54.16 55.86
false 86.49 84.26 87.23 87.57

Tab. 5-3: Coverage Figures for flex/ Compiler View

This is not the only point where much effort was and
still is required to run the tests while the FUT does
behave unpredictable. Similar problems arise when
faults are injected by DCRTT, e.g. NULL pointers.
Then the test environment must not crash itself, e.g.
when collecting and storing test results implying invalid
data. However, compared to the problem described this
issue is rather easy to solve from a principal point of
view.

Tab. 5-4 shows the same results as Tab. 5-3, but
reorders the results so that a direct comparison is
possible between test modes.

Moreover, results are shown for a combination of
lattice- and random-based testing: Firstly, coverage
figures were derived for lattice-based testing.

Then these figures were taken as a starting point for
random-based testing, adding now only blocks which
were not already covered by lattice-based testing.

Test Mode Corrupted Coverage Files VC++
lattice random combined

block 1 1 0
decision 1 71 29

Unfortunately, for VC++ a number of corruptions of the
coverage files occurred yielding a low decision coverage
for random case in one test run.
Coverage / %flex

189 functions VC++ gcc
Coverage Type Lattice Random Lattice +

Random
Lattice Random Lattice + Random

Block 15.32 15.20 16.08 17.15 16.44 18.57
Decision 16.82 (10.55) 18.01 18.15 21.25 19.33 22.78

true 57.76 (45.88) 54.16 60.08 58.85 55.86 60.40
false 85.71 (86.80) 87.23 85.99 84.26 87.57 84.86

Tab. 5-4: Coverage Figures for flex / Test Mode View

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

The last column "Lattice + Random" shows for gcc that
by this combination of test modes the coverage increases
by about 10% of the value achieved in a single test
mode. This result also implies that in this case both test
modes are nearly equivalent, though not fully. But even
the small difference justifies a combination of both test
modes in order to gain a higher coverage and more
filtered test cases at the end.

5.1.1.4 Conclusions on Module Testing
Compared to the coverage figures of the DCRTT test
suite the corresponding figures for flex are rather low. A
potential explanation was already given above.

In fact, if context information needed to guide auto-
testing cannot be retrieved from the source code
automatically, it is most likely that auto-testing will
mainly perform robustness testing and fault injection.

In order to benefit from auto-testing a high coverage is
needed, however, to derive a high number of filtered test
cases and generation of the test driver for test repetition.

At this point the purpose of auto-testing has to be
reconsidered and a strategy has to be identified which
still allows to meets this goal.

Most of the time for getting a test environment for test
repetition and regression testing is needed to define test
cases of interest and to build the test driver.

This goal can still be reached by operational testing
though the test cases are not generated automatically, in
general. However, the concept of identification of
interesting test cases and auto-generation of the test
driver can still be applied to operational testing and its
combination with module testing. Also, in this case the
test driver can be generated with little effort.

For what is still not covered, constraint analysis shall
provide the needed inputs.

5.1.2 Operational and Rule-Based Testing
For module testing only one function out of a set of
functions is considered for testing. Usually, this implies
that certain values may not have been initialised, which
leads to poor conditions for proper operation.

The better a function protects itself against invalid
conditions ("defensive programming style"), the better
are the results which can be obtained during module
testing by auto-test generation.

For operational testing this potential problem does not
exist, because the main function itself should care about
proper initialisation. Therefore an increased coverage
can be expected from operational testing, if the

functions provide poor context information for lattice-
and random-based test modes.

For flex operational testing was performed in addition to
module testing in order to evaluate the contribution from
this test mode to coverage. A formal specification of
inputs is available for flex which lead to the decision to
generate the inputs for operational testing automatically.
If no such precise syntax and semantics is available, the
program under test has to be stimulated manually in the
way the program expects inputs, possibly supported by a
test management tool.

The input can be built from 75 rules driving the
generation of a C program by which a source file can be
parsed by the provided rules. The parser generator
(yacc) adds another internal rule, so that in total 76 rules
exist.

A test generator was built which provides a number of
application rules composed of the pre-defined 75 basic
flex rules. The generation of these rules is based on pre-
defined configuration values, limits and probabilities
which may be varied to get a variety of rule sets for
stimulation (Tab. 5-5).

Tab. 5-5: Input Parameters for Rule Generation

30 input files were generated from 8 sets of
configuration parameters. For seven of these files flex
did not terminate. The remaining 23 files were used to
stimulate flex. The coverage of the flex basic rules and
of the C code was measured, and the coverage figures
were cumulated from run to run.

For four different combinations of test modes the
cumulated coverage was measured:

! operational testing only, starting with zero
coverage,

! operational testing starting with coverage of lattice-
based testing,

! operational testing starting with coverage of
random-based testing,

! operational testing starting with coverage of lattice-
based testing, followeded by random-based testing.

After the 23 flex runs a total rule coverage of 94.74%
was reached. Only 4 of the 76 rules were not covered:

30 max. number of rules per file
 2 max. number of sequences with {}
10 max. number of elements (operators, constants)
10 max. string length
10 max. length of a character class
10 % to generate an empty string
 8 % to generate a subsection in section 2
10 % to insert an end-of-file rule
20 % to insert a start-of-line marker into a rule
40 % to generate a context dependent rule
10 % to generate an end-of-line rule ($)
40 % to generate a closure (*,+,?) rule
-1 maximum depth for recursion

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Rule 1 is the internally added, organisational rule which
cannot be reached from outside. Two error conditions
were not covered and one rule related to start conditions,
which was not, but could be covered by the generator.
Fig. 5-1 shows the number of executions of the basic
rules

Tab. 5-6 gives an overview on the achieved coverage
figures for two sets of functions. The reason to present

the figures for 189 and 161 functions is: the module tests
were executed on the set of files which come with the
flex download package. During operational testing it
was recognised that three files are not needed for linking
at all: scan.c (redundant with initscan.c), libmain.c and
libyywrap. As the blocks and decisions items were
counted for the 189 functions, 28 functions could never
be executed. This lead to a significant lower coverage
(as presented during the conference). Therefore the tests
have been repeated with the minimum set of 161
functions.

To give a complete overview and to allow comparison
with the results from pure module testing also these
values are added.

Fig. 5-1: Execution Profile of flex Rules

flex gcc
Rule coverage max. = 94.74%

Coverage / %
189 functions

Coverage / %
161 functions

Test Mode Block Decision Block Decision
Lattice 17.2 21.3 19.3 23.1
Random 16.5 19.3 19.5 24.5
Lattice + Rnd 18.6 22.8 21.1 24.8
Operational Mode (OM) max. 29.58 42.95 40.8 55.2
Latt + OM max. 37.46 49.43 48.0 60.7
Rnd + OM max. 37.55 49.32 48.3 60.4
Latt + Rnd + OM max. 38.42 49.57 49.4 60.7
OM cumulated 38.82 49.84 50.9 62.7
Latt + OM cumulated 45.64 55.59 56.8 67.6
Rnd + OM cumulated 45.72 55.77 57.1 67.4
Latt + Rnd + OM cumulated 46.43 55.73 58.0 67.8

Tab. 5-6: Coverage Figures for Test Mode Combination

rule 1: "$accept : goal"
rule 27: "flexrule : error"
rule 30: "scon : '<' '*' '>'"
rule 34: "namelist2 : error"

Coverage of flex Rules

0

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76Rule

Number of Executions

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Fig. 5-2: flex Code Coverage vs. Rule Coverage

Fig. 5-3: flex Decision Coverage vs. Rule Coverage

Then for each combination the maximum coverage
values are given, observed when executing flex for one
of the 23 input files. Finally, the cumulated coverage
figures are shown for all combinations.

Fig. 5-2and Fig. 5-3 show the code and decision
coverage vs. for rule coverage.

From the graphical figures, it is obvious that the
coverage figures of module testing are rather

complementary with operational testing. This supports
the hypothesis that for less defensive programming style
module testing focuses on robustness testing, which is
complementary to normal operations. For higher code
and decision coverage (and higher rule coverage) the
overlap in covered blocks and decisions increases,
which is just a consequence of the higher coverage. The
higher the coverage of two test modes, the higher is the
probability to overlap. This conclusion also implies that
at higher rule coverage the error handling – or the area
of robustness testing – is better covered.

Cumulated Block-Coverage vs. Rule-Coverage

0

10

20

30

40

50

60

70

55 60 65 70 75 80 85 90 95 100Rule s [%]

Cove rage [%]

Module Testing Lattice
Module Testing Random
Module Testing Lattice+Random
OM only cumulated
OM + Module Testing Lattice cumulated
OM + Module Testing Random cumulated
OM + Module Testing Lattice+Random cumulated

C umulated D ecision-C overage vs. R ule-C overage

0

10

20

30

40

50

60

70

80

55 60 65 70 75 80 85 90 95 100Rule s [%]

Cove rag e [%]

Module Tes ting Lattice
Module Tes ting Random
Module Tes ting Lattice+Random
OM only cumulated
OM + Module Tes ting Lattice cumulated
OM + Module Tes ting Random cumulated
OM + Module Tes ting Lattice+Random cumulated

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Though the rule coverage is close to 100%, the code
coverage is not: about 1/3 of the code is still not
covered. An explanation for this result cannot be given
at short hand, more detailed evaluation is needed.

The following Tab. 5-7 gives an overview on the
percentage of functions for which 100% block or
decision coverage or both was achieved. In addition to
block coverage the coverage of checkpoints was also
recorded. A check point is either a statement where a
branch of the control flow may occur (if, switch, loops,
break, exit, return, goto) or the end of a block.
Checkpoint coverage less than 100% at block coverage
of 100% implies that this block was left prior to its end,
either by an exception or e.g. a return. Checkpoint
coverage of 100% implies 100% statement coverage. In
addition, the percentage of functions which have 0%
coverage for all criteria is given, i.e. for functions never
called. In fact, only one function, yy_try_NUL_trans of
file initscanc (or scan.c), was never called.

Full statement and MC/DC coverage was achieved for
nearly 50% of functions. Most of the functions fulfilling
the 100% criterion are of lower complexity and have
(roughly) 10 blocks or decision items at most. However,
for yyparse, possibly the most complex function with
285 blocks and 571 decision items still reaches about
75% for all coverage criteria.

flex was operated in default mode, i.e. no additional
command line parameters were provided other than the
rule input file. Using other parameters probably will
raise the coverage. However, the deadline for the
conference and finalisation of this paper did not allow
further evaluation of these options.

Coverage / %

Block Stmt Decision MC/DC Functions / %

0 0 0 0 0.62
100 63.35
100 100 52.80

100 67.70
100 100 53.42

100 100 57.14
100 100 100 100 47.20

Tab. 5-7: Functions with 100% or Zero Coverage

5.2 Exceptions
Raising and capture of exceptions in case of invalid data
is very efficient to identify critical code, because such
weakness can be easily reported without requiring any
manual evaluation effort. Exceptions may either be
raised by an application itself or by the platform
(compiler, OS; processor) in order to flag a problem.
Consequently, if an exception is foreseen or is not raised
a problem will be not recognised.

In the report files on exceptions no information on user
defined exceptions was found. The only exceptions
raised were initiated by the compiler based on hardware
support (e.g. access violation, numerical problem).

Surprisingly, the number of raised exceptions is
platform/compiler-dependent.

5.2.1 Platform Dependencies
The number of exceptions raised during the tests have
been recorded together with locations in the source
code. As two different compilers were used (on top of
the same OS and processor type) differences between
compilers were detected. The gcc does not flag most of
the Floating-Point Exceptions (FPE), only “division by
zero” is raised. The reason could not be identified so far.
VC++ does raise all floating point exceptions. Tab. 5-8
shows the dependencies for the DCRTT test suite.

DCRTT
Test Suite
142 functions

VC++ gcc

lattice random lattice random
Exceptions

expected
occurred

non-compl.

79
79
3

60
60
3

30
30
0

32
32
0

Functions with
Exceptions

27 27 17 17

Filtered Tests 769 626 736 600

Tab. 5-8: Platform Dependency of Exceptions for
DCRTT Test Suite

As the test input vectors differ for lattice- and random-
based testing, a different number of exceptions was
observed for both test modes. A comparison of the
observed exceptions yielded that gcc does not support
FPEs, which explains the big difference between VC++
and gcc. A further conclusion is that this also impacts
the number of exceptions in lattice- and random-based
test modes: lattice-based testing systematically covers
values close to boundaries of a type range, leading to a
higher probability of FPEs.

For each case (compiler, test mode) three figures are
shown:

! expected exceptions
These are exceptions recorded during auto-testing,
enforcing generation of a "filtered test case".

! occurred exceptions
These are exceptions observed during execution of
the test driver, i.e. of the filtered test cases.

! non-compliances

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

These are cases where the equivalent of an expected
exception was not observed during execution of the
test driver. Either it was not raised, another
exception type was raised, or it was raised at
another location. Some non-determinism may occur
for "access violation" exceptions, because its
occurrence depends on the actual memory
configuration or pointer contents.
Such non-compliances are a strong indication for
non-deterministic results and weakness of code.
Their occurrence also depends on the compiler. The
gcc is less accurate from this point of view.

Clearly, occurrence of exceptions also impacts
identification of filtered test cases, though the
differences between the test modes cannot be explained
only by this dependency.

Tab. 5-9 gives the results for flex software. Though no
deep manual code analysis was performed on flex
source code, it is likely that it does not use many
floating-point operations. This explains the small
difference between the two test modes. The higher
number in case of lattice-based testing may be caused –
as a hypothesis – by a higher coverage of invalid data,
causing e.g. an index-out-of-range condition and an
access violation.

flex
189 functions VC++ gcc

lattice random lattice random
Exceptions

expected
occurred

non-compl.

179
124
101

154
110
101

177
135
47

146
121
39

Functions with
Exceptions

101 191 91 93

Filtered Tests 359 328 365 313

Tab. 5-9: Platform Dependency of Exceptions for flex

Tab. 5-10 shows the observations regarding anomalous
program termination, categorised by locks (deadlocks,
livelocks) and aborts. In case of an abort DCRTT cannot
take control after such a termination condition. An abort
is something different from an exception and program-
enforced exit, because DCRTT captures exceptions and
exits during the tests, so that the test can be continued.

A lock cannot be detected by the DCRTT test program
itself. It is recognised by a monitoring program which
launches the test program and enforces termination
when a lock is detected. Therefore data of the test
program cannot be saved at termination. Similarly, it
happens for an abort. As reason for such an abort stack
overflow has been observed, but not all such aborts were
deeply investigated.

The occurrences of anomalous termination are also an
indicator for the quality of the software: the less the
figure, the more defensive is the programming style.

For the DCRTT test suite there is one intended live lock
(a for-ever-loop).

For flex a livelock was observed for function add_action
in file misc.c. A global variable was not in the correct
range (due to missing initialisation) and caused the
algorithm to fail in an endless loop.

Locks +
Aborts VC++ gcc

lattice random lattice random
DCRTT

#
%

intended
(1)
-

intended
(1)
-

intended
(1)
-

intended
(1)
-

flex
#

%

28+10
38

20.12

17+12
29

15.35

14+14
28

14.81

12+16
28

14.81
oSIP

#
%

25+369
394

60.14

Tab. 5-10: Platform Dependencies of Anomalies

VC++ seems to be more sensitive for anomalies, but a
general conclusion is not possible, because the
occurrence is non-deterministic. While the summary
figures are close together (except the one for
VC++/lattice), the dedicated figures differ significantly,
possibly statistically – more or less, depending on the
actual configuration of the run-time environment.

As a high number of anomalies (60% of module tests)
was observed, this package was dropped for further test
runs and evaluation.

5.2.2 Conclusions on Exception and Anomaly
Occurrence
Having executed a large number of tests in Ada and C,
the following conclusions from an organisational and
software-engineering point of view can be drawn on
occurrence of exceptions:

(a) the lower the number of non-anticipated
exceptions, the more defensive is the
programming style,

(b) the higher the number of exceptions, the higher
is the manual effort for verification

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

(a) is a consequence of a discrepancy between a
subprogram’s specification (“prototype”) and its body,
the implementation. E.g. if the prototype defines a
parameter x of full range of “int”, and the parameter is
used in an expression like “1/x” in the body, then a
“division by zero” exception will be raised, for sure
during auto-testing (as "zero" is an inherent special test
case). A “defensive programming style” would restrict
the type range to “positive” which is rather easy to do in
Ada.

In case of C it is more complex because the compiler
does not support consistency checks like in Ada and
accurate definition of type ranges . In order to increase
the density of test cases in the valid range a hint on the
intended valid range is required, which is supported by
DCRTT. However, in order to identify potential
inconsistencies, “robustness testing” needs to consider
the full range. Consequently, this requires two steps of
testing: a detailed exploration of the valid range, and a
check over the full range for assessment of robustness.

(b) is based on the following consideration: if a non-
anticipated exception occurs during auto-testing, the
software engineers have to prove that this cannot happen
under operational conditions. However, such a proof
requires a – recurring - detailed manual analysis of the
whole system to ensure that it really cannot happen,
while it would be easily a matter of an Ada compiler to
confirm compliance of the parameter’s type through the
whole system at zero human effort.

In C the only indication for such a compliance is the
absence of exceptions during testing of the given full
type range, which is not fully deterministic, however.
But in a defensive programming style also in C invalid
data can be identified easily when checks are added
(manually), which can also be logically removed by the
pre-processor, if really needed.

Consequently, auto-testing strongly helps to identify
potential weakness of an implementation and to save
money, if applied early enough in the lifecycle.

5.3 Test Case Reduction and Filtering
Test case filtering aims to find the "test cases of interest"
by coverage criteria. From a large set of test data
stimulating the FUT during module testing and the
system-under-test during operational testing a reduced
set of test cases is identified. For each such tests case a
function is created in a test driver which prepares the
test environment for each of the "interesting cases" (Fig.
5-4). This driver can be executed completely
independent from the previous auto-testing environment.
An option exist, to automatically configure the test
driver for integration with Cantata++. Tab. 5-11 shows
the results of test case filtering for the DCRTT test suite.

The total number of samples were executed ("test data
generation and filtering") within about 1 hour on a
laptop 1.6 GHz mobile and a desktop 3.1 GHz.

Fig. 5-4: Generation of Independent Test Driver

The difference in total number of samples between
lattice- and random-based testing occurs because for
random testing exactly the user-defined number of
samples can be taken, while for lattice-based testing an
integer number for each stimulated test parameter must
be derived by logarithmic calculation from a given
number, which together spawn a product of an integer
number, which usually is larger than the planned
number.

Roughly, a reduction of test cases by a factor of 700 is
achieved. This is still a high number for manual
evaluation. However, this software packages consists of
nearly 900 blocks and decision items each, which makes
it reasonable to end up with an optimised / minimised
set of about 700 test cases.

The lower number of filtered test cases for random-
based testing directly relates to the lower coverage
which was achieved for this test mode (see Tab. 5-1).
From this point of view lattice-based testing must be
considered as the better choice, at least for this software
package. A similar conclusion can be made for flex.
However; for a general conclusion more data need to be
collected.

S p e c ific a tio n
S o u rc e C o d e

“ D e ve lo p m e n t
E n v iro n m e n t “

A u to -T e s t
E n v iro n m e n t

“ T a rg e t
E n v iro n m e n t “

F ilte re d
T e s t In p u ts

A u to -T e s t
E xe cu tio n

In d e p e n d e n t T e s t D riv e r
In te g ra tio n o f C a n ta ta + +

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

In principle, the conclusion could also be that random
testing would generate more efficiently "interesting test
cases", so that the same coverage could be achieved
with less filtered test cases. Although currently no
specific evaluation was done supporting or rejecting this
hypothesis, it seems that the lower number of filtered
test cases is a matter of the lower coverage.

As a future issue is the optimisation of filtered test cases,
i.e. to investigate if some of these test cases are already
covered by others.

Execution of the generated test driver with Cantata++
and evaluation of coverage by its capabilities yielded the
same coverage results as before during "test data
generation and filtering", getting the advantage of
additional evaluation capabilities by Cantata++.

In fact, DCRTT test filtering acts as a "writer of
Cantata++ test cases" which otherwise need to be
identified manually.

VC++ gccTest Cases
DCRTT lattice random lattice random

Total Samples 552339 428318 552342 428318

Filtered 769 626 736 600

Tab. 5-11: Test Case Reduction for DCRTT Test Suite

Tab. 5-12 shows the equivalent results for flex. It is
important to mention that these are the test cases derived
during execution of the module testing modes
(lattice/random) corresponding to the coverage figures
of Tab. 5-3and Tab. 5-4. The lower number of test
cases is a consequence of the low coverage.

VC++ gccTest Cases
flex lattice random lattice random

Total Samples 525660 492489 533070 487122

Filtered 359 328 365 313

Tab. 5-12: Test Case Reduction for DCRTT (MT only)

Fig. 6-1 shows the distribution of filtered test cases for
function bldtbl in file tblcmp.c of flex software. On the
vertical axis the identified test cases are identified on the
left side, and anomalies are reported on the right side, if
occurred. On the horizontal axis the values of the
stimulated parameters are shown, divided into 7 classes:
invalid low, very low, low, medium, high, very high,
invalid high related to the type range. For enumeration
types the literals are shown, if less than 6 literals are

defined. For pointers (incl. strings) the case "NULL" is
indicated in addition, and for strings an empty string. At
the bottom the coverage figures are shown as achieved
for the FUT.

6 SMARTG TEST RESULTS

6.1.1 Constraint-/Path-set-based Testing
SmartG is currently a prototype for constraint-based test
data generation of Java code. The applied algorithms
shall be later integrated into DCRTT, and possibly
DARTT.

Path sets were derived for four example Java methods:

• calculation of the greatest common divisor of two
positive integral numbers (GCD),

• determination of whether two rectangles intersect,
• determination of whether one rectangle is contained

in another,
• determination of whether a point is contained in a

rectangle.

While these functions may seem simple from a
functional point-of-view, their implementations pose
important challenges for random test data generation
and constraint-based testing.

An implementation of Euclid's algorithm for
determination of the greatest common divisor will
typically consist of a loop iteratively subtracting one of
the integers from the other until both are equal, based on
the property gcd(a,b)=gcd(a-b,b).

The case of a loop not being iterated at all is a very
interesting case because many developers tend to forget
this possibility when programming a loop.

Therefore this special case is constructed as a path set
consisting of only those paths where the loop is skipped,
i.e. the loop condition is fulfilled from the start.

Finding appropriate test inputs for this case by random
test data generation is difficult and may be very time
consuming. In two independent selections of two
integers from a set of 232 possible values for each a pair
of equal integers is only selected in one out of 232 cases.

Given a typical throughput of 3000 test input tuples per
second for a function-under-test at this complexity level
[3] this gives a mean run time of 50 days to acquire at
least one such test input with a probability of 95%.

BSSE System and Software Engineering

 Copyright Rainer Gerlic

In contrast, the con
able to provide test
from the GCD
milliseconds (Tab.
case of skipping the

Looking at the exa
of two rectangles, t
to the GCD exam
approach is superi
point of view.

For the code det
contained in anoth
9 different path se
paths through the
whether the exten
rectangles do ove
delivers one test i
about 560ms, whic
tuples per second.
h BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

Fig. 6-1: Distribution of Filtered Test Cases

straint-based test data generator was
 inputs for all 8 path sets constructed
source code within about 350

 6-1), including such for the special
 loop.

mple of determining the intersection
he experiment shows that in contrast
ple the random test data generation
or in this case from a performance

ermining whether one rectangle is
er, the path set construction provides
ts, consisting mainly of the different
 conditional statements determining
sions in x- and y-direction of the
rlap. The constraint-based approach
nput tuple for each path set within
h corresponds to about 16 test input

However, the different path sets merely constrain the
inputs by simple inequalities, such as requiring that the
x-ordinate specifying the right limit of the contained
rectangle is less than the x-ordinate specifying the right
limit of the containing rectangle, or vice versa.

It can be easily derived that by randomly selecting
values for the ordinates will provide appropriate inputs
with a high probability of about 50% when only the pair
of the right ordinates is considered. Considering all four
pairs of ordinates (top, bottom, right, left) results in a
reduction of about 1/16. The additional requirement that
both rectangles must be non-empty (i.e. left<right,
top<bottom) may additionally reduce this
probability, but it will nowhere come near to the
impressively small 1 in 232 probability observed in the
GCD example.

Therefore for this example the pure random generation
concept will produce a much higher throughput of
interesting and also differing test inputs than the
constraint-based approach.

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

From this it follows that an efficient strategy must first
try to provide the required coverage by a random
generation approach. Only if the desired coverage is not
reached after a certain amount of time has been spent,
the constraint-based generation concept may be used to
fill the gaps.

Example # path
sets

Time /
ms

Mean
Throughput / s

GCD 8 ~350 ~23
rectangle
intersection

96 ~3300 ~29

rect-in-rect 9 ~560 ~16
point-in-rect 9 ~55 ~164

Tab. 6-1: Performance of Constraint-based Testing

The tool used in these experiments is still in a prototype
phase. There are optimisations planned regarding the
prediction of paths which are expected to make the
approach feasible also for more complex constructs,
including the consideration of subprogram calls.

The algorithm used to derive the test data once the path
sets are determined is of such a general nature that, e.g.,
also machine code could be used as input, which might
make the non-availability of source code for parts of a
system under test less critical.

It also needs to be noted that the efficiency of the
approach depends heavily on the efficiency of the
underlying constraint solver. The solver must be
optimised for fast detection of inconsistencies in the
constraint set, i.e. the absence of a solution fulfilling all
the constraints.

Unfortunately, most constraint solvers based on the
finite-domain constraint solving strategy typically are
not optimised for this kind of determination. In early
phases of this research it was found that the generally
available solvers of this kind need a huge number of
propagation steps just to determine that a<b is
inconsistent with b<a.

Such an optimised constraint solver was defined using
K.U. Leuven JCHR [22], based on a combination of
axiomatic propagation (e.g. A≤B ∧ B≤A ⇔ A=B) and
finite domain constraint solving techniques. The solver
has been shown to identify inconsistencies efficiently.

As the K.U. Leuven JCHR constraint compiler was
lacking trailing capabilities to allow backtracking after
detecting an inconsistent constraint store, such
capabilities had to be implemented in addition, based on
the Memento design pattern [23]. The trailing method is
only loosely interfacing with the generated constraint
handler code and the JCHR compiler, and only a few
modifications were necessary to the latter. However, a
more integrated implementation might be more

optimised, but is expected to require considerable
changes to the structure of the generated constraint
handlers.

7 DISCUSSION ON TEST STRATEGY

7.1 Feedback on Test Strategies
The results presented in chapters 5 and 6 support
globally the strategy as defined in Fig. 3-1. As an
optimisation, the feedback from practice is to perform
constraint-based testing after operational testing,
especially when module testing leads to low coverage
figures as observed for flex.

In this approach, for flex the time-consuming constraint-
based testing only needs to be applied to about 1/3 of
test cases based on selection by coverage criteria,
hopefully ending up with very little manual effort
required fortesting.

Similarly, without constraint-based testing the effort for
manual testing is reduced to 1/3, when aiming to achieve
the full 100% coverage by conventional (manual)
testing.

The results on rule-based testing show, that it is still a
challenge to achieve 100% code coverage, even if the
syntax for the operational input is formally specified. In
case of flex it seems that more cases and combinations
can be generated than visible from the rule specification.

While the intention of auto-testing is to derive test cases
for detailed testing and test evaluation at little manual
effort, a major part of this issue can still be kept, even
this basic approach leads to low coverage due to a
programming style which is not well supporting auto-
testing.

By capturing of test cases during operational testing a
lot of more test cases can be identified automatically, so
that human effort is only required for system operation.

7.2 Test Evaluation Strategy
Due to automatic capture of "test cases of interest" the
test procedure for auto-testing looks quite different as
for conventional testing.

In the upper part of Fig. 7-1 the conventional procedure
is shown. It starts with identification of test cases, firstly
from the specification, later – possibly from code, too.
Then the test environment has to be prepared, the tests
have to be executed and evaluated.

In the lower part the modified test procedure in case of
aut-.testing is shown. For the results produced by auto-
test generation and auto-capturing during system
operations only test evaluation remains as manual
activity. However, the evaluation procedure differs from
the one in case of manual testing. The auto-test

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

environment provides test vectors and the compliance of
these results have to be compared with the contents of
the specification. This requires a transformation of the

results in a form which can be compared with the
specification.

Fig. 7-1: Test Evaluation Procedures
8 CONCLUSIONS
Specific conclusions were already drawn in sections
5.1.1.4 and 5.2.2 on module testing and occurrence of
exceptions and anomalies. The final conclusions
summarise the findings.

8.1 Coverage
The feedback on auto-testing based on information from
specification and code is:

! the more defensive is the programming style, the
higher is the coverage,

! considering a "defensive programming style" as a
"good programming style" for high integrity
software, it follows:
the better the programming style, the higher the
coverage,

! the more information on type ranges is available,
the higher is the coverage. This explains why a
higher coverage can be achieved for Ada software
compared to C, if no measures are undertaken to
compensate this weakness.

The recommendations of DO178x [21] suggest to take
constants to express limits ("immediate operands" in
assembler), e.g. for a loop range, to avoid potential
corruption during execution. Applying this
recommendation consequently towards a defensive
programming style will help a lot to increase the
coverage which can be achieved by automatic code
analysis.

From this follows directly

! auto-testing cannot compensate poor context
information in the code due to an "optimistic"

programming style, based on the assumption of
"inherent correctness" of code,

! auto-testing cannot compensate poor testability of
code.

Vice versa, low coverage is a strong indication for
weakness of code and potential problems during its
execution.

8.2 Platform Dependencies
The results lead to the following conclusions:

! Test results depend on the properties and
capabilities of compilers. One compiler may give
more hints on potential weakness of the code than
others.

! Test results depend on the actual configuration of
the test environment formed by the OS, run-time
system of the compiler, the processor type, the
available memory and memory access, and on
attached hardware.

As it is unknown a priori which is the best platform /
compiler and configuration of the test environment
regarding sensitivity to raise excpetions or to produce
anomalies, the recommendation is to apply more than
one platform or test driver.

Non-occurrence of exceptions and anomalies does not
imply their absence, similarly to "non-occurrence of
faults does not imply absence of faults".

8.3 Test Efficiency and Cost Savings
The exercises described above demonstrate that auto-
testing and its combination with operational testing does
save a lot of human effort, in the investigated cases up to

Coding

Result Compliance

Test
Execution

Test
EvaluationSpecification

Manual Test Case
Identification

Test
Preparation

Specification Coding

Result Compliance
Harmonisation

Results - Specification

Auto-Testing +
Operational Testing +

Auto-Filtering

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

2/3 of test preparation, test execution, documentation of
results and preparation of regression testing.

Auto-testing is the more efficient, the better is the
programming style. For high integrity software like
space software this condition should be true, leading to
the conclusion that for space software significant cost
savings are realistic. Moreover, investments in a good
programming style will result in high cost savings,
possibly in multiples of the basic investment.

A low coverage indicates missing context information in
the code, immediately whenever auto-testing is applied.
This requires

! firstly, manual test procedures implying high effort,

! secondly, a detailed analysis of all the source code
to ensure that no improper operation can be induced
at run-time by data, dynamically created and
changed dynamically. This also implies high
recurring effort, as this manual analysis always has

to be repeated after every small change in the
course of maintenance.

8.4 Software Engineering Issues
A challenging result is that coding style should better or
at all consider the needs of auto-testing. At little effort
appropriate standards can be established and applied
which shall help to reduce the costs of testing.

It is a real challenge because nowadays such issues are
poorly considered, either regarding programming style
or language support.

9 ACKNOWLEDGEMENTS
Ralf Gerlich would like to thank the University of Ulm,
Germany, for the support by a Ph.D. scholarship, under
which parts of this ongoing work on constraint-based
testing were carried out.

BSSE System and Software Engineering

 Copyright Rainer Gerlich BSSE, 2007 All Rights Reserved Evaluation of Test Strategies and Platforms, DASIA'07, 29.05. - 01.06.2007, Naples, Italy

10 REFERENCES
 [1] P.Godefroid, N.Klarlund, K.Sen: DART: directed automated random testing, Proceedings of the 2005

ACM SIGPLAN conference on Programming language design and implementation, pp. 213-223, Chicago,
IL, USA, 2006, ACM Presse, ISBN:1-59593-056-6

[2] C.Pacheco, S.K.Lahiri, M.D.Ernst, Th. Ball: Feedback-directed random test generation, ICSE'07,
Proceedings of the 29th International Conference on Software Engineering, Minneapolis, MN, USA, May
23-25, 2007

[3] Ralf Gerlich, diploma thesis: Size-optimising Automatic Random Testcase Set Generation for Verification
and Validation, University of Ulm, July 2005

[4] Dynamic C Random Test Tool, http://www.bsse.biz → Products → DCRTT
DCRTT User's Manual, BSSE, 2006

[5] R.Gerlich, G.Fercher: "A Random-Testing Environment for Ada Programs", Eurospace Symposium "Ada
in Aerospace", Brussels, November 1993

[6] Dynamic Ada Random Test Tool, http://www.bsse.biz → Products → DARTT
DARTT User's Manual, BSSE, 2005

[7] DARTT Test Results AISVV-FAS, AISVV-TN2-BSSE, 2005, Automated ISVV, ESTEC contract
no.18056//04/NL/JA
R.Gerlich, R.Gerlich, Th.Boll, K.Ludwig, Ph.Chevalley, N.Langmead: "Software Diversity by
Automation", DASIA'05 "Data Systems in Aerospace", 30 May – 2 June, 2005, Edingburgh, Scotland

[8] Report on AutoPorting and DARTT Module Tests, AISVV-TN5-BSSE, 2005,
Summary Report, AISVV-TN4-BSSE, 2005, Automated ISVV, ESTEC contract no.18056//04/NL/JA

[9] DARTT Test Results ACG-MSU, ACG-TR1-BSSE, Nov. 2005
Automatic Code Generation (ACG), ESTEC contract no.18670/05/NL/GLC

[10] CTM, Classification Tree Method, see e.g. J.Wegener: Test Case Design by CTM and CTE, TACOS’04,
Barcelona, Spain, March 2004, http://www.lta.disco.unimib.it/tacos/InvitedTalk/WegenerTACoS04.pdf

[11] Cantata++, IPL Ltd. Bath, UK, http://www.ipl.com
[12] The GNU oSIP Library, open software for the Session Initiation Protocol (SIP),

http://www.gnu.org/software/osip/osip.html.
[13] Flex, Fast LEXical analyser generator, http:// www.gnu.org/software/flex/
[14] B.P. Miller, G. Cooksey and F. Moore, "An Empirical Study of the Robustness of MacOS Applications Using Random

Testing", First International Workshop on Random Testing (RT’06), Portland, Maine, ACM Press, July 2006, pp. 46 –
54.

[15] R. Hamlet, “Random testing", In: J. Marciniak (ed.), Encyclopedia of Software Engineering, Wiley, 1994, p. 970 –
978.

[16] T. Y. Chen, H. Leung, I. K. Mak: “Adaptive Random Testing”, Proceedings of the 9th Asian Computing Science
Conference Advances in Computer Science (ASIAN 2004), LNCS 3321, Springer-Verlag, 2004, pp. 320–329,
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3321&spage=320

[17] J. Mayer, “Lattice-Based Adaptive Random Testing”, Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), ACM Press, New York, NY, USA, 2005, pp. 333–336.

[18] R. Merkel, “Analysis and Enhancements of Adaptive Random Testing”, PhD Thesis, Swinburne University of
Technology, Australia, 2005.

[19] T. Y. Chen, T. H. Tse, Y.-T. Yu, “Proportional Sampling Strategy: A Compendium and Some Insights”. Journal of
Systems and Software 58(1), 2001, pp. 65-81.

[20] P. McMinn, “Search-Based Software Test Data Generation: A Survey”, Software Testing, Verification and Reliability,
14(2), 2004, pp. 105-156.

[21] DO-178B, Software Considerations in Airborne Systems and Equipment Certification, Radio Technical Commission
for Aeronautics (RTCA), http://www.rtca.org/

[22] P. Van Weert, T. Schrijvers, B. Demoen, "K.U.Leuven JCHR: a user-friendly, flexible and efficient CHR System for
Java", Proceedings of Second Workshop on Constraint Handling Rules, Sitges, Spain (Schrijvers, T. and Frühwirth, T.,
eds.), 2005, pp 47-62

[23] E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns: Elements of Reusable Object-Oriented Software",
Addison-Wesley, 1995

http://www.lta.disco.unimib.it/tacos/InvitedTalk/WegenerTACoS04.pdf
http://www.ipl.com/
http://www.gnu.org/software/flex/
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Leung:H=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Mak:I=_K=.html
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-9743&volume=3321&spage=320
http://www.rtca.org/

	A
	ABSTRACT:
	INTRODUCTION
	STRATEGIES FOR TEST GENERATION
	Theoretical Foundations
	Similar Approaches
	Applied Strategies
	Languages
	Platforms
	Coverage
	Test Generation Modes
	Test Evaluation Criteria

	THE TEST ENVIRONMENT
	The Test Tools
	Implementation
	DCRTT
	SmartG

	Managing Auto-Testing
	Test Strategies
	Some Issues of Practical Auto-Testing

	SOFTWARE UNDER TEST
	DCRTT
	SmartG
	Overview on Tested Functions

	DCRTT TEST RESULTS
	Coverage
	Module Testing
	DCRTT Test Functions
	oSIP
	flex
	Conclusions on Module Testing

	Operational and Rule-Based Testing

	Exceptions
	Platform Dependencies
	Conclusions on Exception and Anomaly Occurrence

	Test Case Reduction and Filtering

	SMARTG TEST RESULTS
	
	Constraint-/Path-set-based Testing

	DISCUSSION ON TEST STRATEGY
	Feedback on Test Strategies
	Test Evaluation Strategy

	CONCLUSIONS
	Coverage
	Platform Dependencies
	Test Efficiency and Cost Savings
	Software Engineering Issues

	ACKNOWLEDGEMENTS
	R
	REFERENCES

