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Computer-Integrated Validation

O through the platforms: validation support

simulation on host
execution on host
execution on target

[ through the life cycle: coherent transitions

specification - design
design - coding

coding - module testing
module testing - integration
integration - acceptance

[ through the application types

embedded (real-time) systems
MMI

databases

algorithms
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The 2-Dimensional Life Cycle
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Experience

[ validation support and coherent transitions

very efficient after re-organisation and automation
from step to step (verification and validation)
from platform to platform

on-line walk-through during second half of this presentation

O application types

careful consideration neeed
methods and tools do not cover every application type
strong in one area, weak in another area

when trying to apply a method / tool to the whole scope of the application:
one may loose everything — no advantage at all
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Example: SDL

very strong and very efficient for behaviour and distributed systems
® verification and validation
® automation of verification and code generation

problems with verification when large data structures are processed
but only in case of verification by exhaustive simulation,
no constraints / problems in other cases
® behavioural verification does not terminate:
values of data are added to system space: explosion of system state space
® advantage of automated verification of behaviour is lost
® remark: filtering does not help here

considered solution: EaSySim Il + future evolution
® partition the problem (system) into application types

® define interfaces between the partitions

® apply the best method / tool to each application type
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Executed Steps (1)

[ export data processing to C
® use the SDL-C interface
® define data types in SDL, take them in C
® do not allocate memory for (large) data in C
® do only declare such data in SDL which impact behaviour

[ compress range of data which are used in SDL
® consider out-of-range condition for x (real, integer): [X|_,XU]
® if we only need the decision: x is out-of-limit: true/false
introduce an operator:
xOutOfLimit: — Boolean "extern C";
instead of implementing (pseudo-code, not SDL code)
X Real;
if (x>Xy OR x<X|) then ....
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Executed Steps (2)

[ exportto C

verification means are lost
disadvantage

[ consequence:

apply appropriate verification method (formal method) to the exported part
"export via C interface" instead of "export to C"

do implementation in the best environment for each part of the system
import results via C interface: generated code
use generated code in SDL part for simulation and code generation phase

[ optimisation of partitioning approach:

use the interfaces to provide test drivers for the exported parts
gives a better coverage of simulation for behavioural verification
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Complementary Verification and Validation
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operationa
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code
generation

EaSySim ||
SDL
ObjectGEODE

interface
transformation

—p

C Interface
¢

Ada

B/ RAISE

SAO+

functional
verification

~ code
integration

Data Bases

Tcl/Tk

code
generation

Others
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Efficient Walk through the Platforms

[ on-line demo: walk from simulation to target

® example: data management system
processor, bus, sensor, actuator

[ no need to wait for the very end of life cycle to move to target

® due to automated code generation capabilities of SDL / ObjectGEODE
for different platforms

® however: appropriate organisation needed
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Application: On-Board Data Management System

RSIM
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The Demo Steps

O simulator (on Sparc)

installation

simulation in batch
random simulation
generation of MSC
exhaustive simulation

[ execution on host (Sparc UNIX)

installation
code generation
execution and tracing

[ execution on target (PC bare machine, VxWorks, WindView)

® execution, tracing and recording of task status

installation
code generation
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From Verification & Validation to Code Execution

Host / Sparc

System representation| HOSt | Sparc

Verification & Validation

ObjectGEODE simulator

SDL model

Code Generation
UNIX / Linux platform

Message Sequence Charts

(MSC)

ObjectGEODE code generator

PC target

Code Generation
target (80x86)

Traces and MSC's

PC / bare machine
ObjectGEODE code generator

Traces

WindView View Graphs

Installation,
Execution

&
Validation

15 minutes
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Performance Evaluation

[ resource consumption / Message Sequence Chart
® all devices consume independent resources
® time stamps
o start time of data acquisition
+ actual time when leaving a device
® modelling bug is still included, is visualised by time stamps

[ recording on target system
® task activities are visible
® bug detected for cyclic processing
when measuring the time intervals between the cycles
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Message Sequence Chart
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Data Flow
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Conclusions

partitioning of system development and validation needed

® best method and tool for a certain application type: separated verification
® integration of system partitions in SDL

® complete or advanced system validation in SDL

® through all platforms

partitioning ensures success of validation of a broader class of
applications

efficient walk through the platforms
® after optimisation of organisation

for detailed questions:
® time for detailed walk-through
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