Experience with Validation by Simulation,

Automated Code Generation and Integration

'DASIA 97
- Data Systems in Aerospace -
Sevilla, Spain
May 26 - 29, 1997

Rainer Gerlich

BSSE System and Software Engineering

Auf dem Ruhbiihl 181
D-88090 Immenstaad

Phone: +49/7545/91.12.58
Mobile: +49/171/80.20.659
Fax: +49/7545/91.12.40
e-mail: gerlich@t-online.de

BSSE System and Software Engineering

Computer-Integrated Validation

O through the platforms: validation support

simulation on host
execution on host
execution on target

[through the life cycle: coherent transitions

specification - design
design - coding

coding - module testing
module testing - integration
integration - acceptance

[through the application types

embedded (real-time) systems
MMI

databases

algorithms

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

The 2-Dimensional Life Cycle

Target Code

Simulation Platform

7774

Specification
Life Cycle Host System Target System
Phases
Design M _—— @
Hardware-
Software
Integration

Fina Systemli @

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Experience

[validation support and coherent transitions

very efficient after re-organisation and automation
from step to step (verification and validation)
from platform to platform

on-line walk-through during second half of this presentation

O application types

careful consideration neeed
methods and tools do not cover every application type
strong in one area, weak in another area

when trying to apply a method / tool to the whole scope of the application:
one may loose everything — no advantage at all

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Example: SDL

very strong and very efficient for behaviour and distributed systems
® verification and validation
® automation of verification and code generation

problems with verification when large data structures are processed
but only in case of verification by exhaustive simulation,
no constraints / problems in other cases
® behavioural verification does not terminate:
values of data are added to system space: explosion of system state space
® advantage of automated verification of behaviour is lost
® remark: filtering does not help here

considered solution: EaSySim Il + future evolution
® partition the problem (system) into application types

® define interfaces between the partitions

® apply the best method / tool to each application type

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Executed Steps (1)

[export data processing to C
® use the SDL-C interface
® define data types in SDL, take them in C
® do not allocate memory for (large) data in C
® do only declare such data in SDL which impact behaviour

[compress range of data which are used in SDL
® consider out-of-range condition for x (real, integer): [X|_,XU]
® if we only need the decision: x is out-of-limit: true/false
introduce an operator:
xOutOfLimit: — Boolean "extern C";
instead of implementing (pseudo-code, not SDL code)
X Real;
if (x>Xy OR x<X|) then

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Executed Steps (2)

[exportto C

verification means are lost
disadvantage

[consequence:

apply appropriate verification method (formal method) to the exported part
"export via C interface" instead of "export to C"

do implementation in the best environment for each part of the system
import results via C interface: generated code
use generated code in SDL part for simulation and code generation phase

[optimisation of partitioning approach:

use the interfaces to provide test drivers for the exported parts
gives a better coverage of simulation for behavioural verification

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

Complementary Verification and Validation

behavioural,
performance,
operationa
V&V

code
generation

EaSySim ||
SDL
ObjectGEODE

interface
transformation

—p

C Interface
¢

Ada

B/ RAISE

SAO+

functional
verification

~ code
integration

Data Bases

Tcl/Tk

code
generation

Others

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Efficient Walk through the Platforms

[on-line demo: walk from simulation to target

® example: data management system
processor, bus, sensor, actuator

[no need to wait for the very end of life cycle to move to target

® due to automated code generation capabilities of SDL / ObjectGEODE
for different platforms

® however: appropriate organisation needed

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

Application: On-Board Data Management System

RSIM
47

Resource, Sceanrio & Interface Mgt.

Operational
and Telemetry
Test

Commands

DMS Processor

Sensor Data

&
Actuator Cmds.

Bus

Sensor Data

&
Actuator Cmds.

Devices

Sensor Actuator

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

The Demo Steps

O simulator (on Sparc)

installation

simulation in batch
random simulation
generation of MSC
exhaustive simulation

[execution on host (Sparc UNIX)

installation
code generation
execution and tracing

[execution on target (PC bare machine, VxWorks, WindView)

® execution, tracing and recording of task status

installation
code generation

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

From Verification & Validation to Code Execution

Host / Sparc

System representation| HOSt | Sparc

Verification & Validation

ObjectGEODE simulator

SDL model

Code Generation
UNIX / Linux platform

Message Sequence Charts

(MSC)

ObjectGEODE code generator

PC target

Code Generation
target (80x86)

Traces and MSC's

PC / bare machine
ObjectGEODE code generator

Traces

WindView View Graphs

Installation,
Execution

&
Validation

15 minutes

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineerin

Performance Evaluation

[resource consumption / Message Sequence Chart
® all devices consume independent resources
® time stamps
o start time of data acquisition
+ actual time when leaving a device
® modelling bug is still included, is visualised by time stamps

[recording on target system
® task activities are visible
® bug detected for cyclic processing
when measuring the time intervals between the cycles

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

Message Sequence Chart

inst_1_rsim_p

PROCESS
Seazysimniidzin_birsim_gd1)

inst_1 _dms_p inst_1_kws_p inst_1 _sensor_p
PROCESS PROCESS
PROCESS
- Jeazysimiinetwork_bbus_kb Jfeasysimiifuzers_hidevices_b
feazysimiizers_bidms_bidms_odl1) Jus_pi1] faensor_kisensor_gd1)

testformatl_s { { setstate, -1 rsf

i, 1, sensor, 1,1 powered, imm, noprop et

inst_1 _actuator_p

v,11.000000,11.000000 3)

PROCESS
feasysimiifuzers_bidevices_b
factuator_bactuator_pdl)

testformatl

| 5 (. setstate, -1 ,rsim,1,2ctuator, 1,1

Cevrer el imm, noproperty, 1 2.000000,1 2.000

boo 3y

testi)

prrnatl_s ¢ (. setatate, -1 rsimn, 1 ,bus, 1,1 powere)

irnrn bk operty 13 .000000,13 00000

0.3

testformatl _s o {. setstat]

E,—1,rgim,1 dms, 1,1 powered imm, noproperty 1

l+.000000,14.000000) 3

crndformat_s { . gonon

inal,—1,rsim, 1, zensor,1,1,1,irmm, 0,21 .0

0000,21 000000 3 3

i

{format_s { . ganominal, -1 ,rsim, 1,actu)

ktor,1,1,1,imm,0,22 000000,22 000000))

crncformat_s { { |

gonominal,—1 rsim, 1 dms,1,1,1,imm, 0,23 000

0,23 000000) 4

o

|

cmdformat_s { (. senare

u,255,dms,1,58ns0r,1,1,2,imm, 0,133

00000,1334.000000))

emdformat_s § (. senscal

crndformat_s { (. sens

ecu,255,dms, 1,sensor,1,1,2,imm,0,1334 .D.DIDEIDD,I 385.000000 3

crndformat_s { {. sens

ta,255,5ensar,1,0dms,1,2,2,imm,0, 1334 .00

0000,1415 000000) 3

255, sensor,1,dms, 1,22 imm, 80,1334

0000, 1543000000 5)

cmdformat_s § . actemnd

255,dms, 1 actuator,1,1,2,imm, 0,633

(000006334 000000 3)

format_s ¢ (. actemdim, 255 actuator, 1,rsim, 1

o format_s | ¢, actornd, 255, dms, 1 actuato

1,1,2 jimm, 06334 000000,6398 000000

i

format_s . actemdtm, 255,actuator,1,rsi

1.1

2 jmm, 0,334 000000,6415 000000

1

1,2,imm, 0,53 34 000000,6479 000000

Iy

crdformat_s { . sensregL

,255,dms,1,sensor,1,1,2,imm,0,1133

0000011334 000000) 3

crciformat_s { . sensdatd

testformatl_s (. setstate, —1,rzim

crciformat_s . sensre

u,255,dms,1,zensar,1,1,2,imm,0, 11334 .00

0000, 11358 000000))

crcformat_s o (. sensdﬁa,ESS,sensor,l Jdmiz, 1,220, 0,11 334 .00y

55,zensor, 1 dms,1,2,2,imm,0,11354)

000,11415.000000 3)

00000,11543 000000 3)

,1,2ensor,1,1 powerfailure, imm hoprogp

rty,41 00000041 000000))

testformatl_j

{ . setstate, -1 rsim, 1 actuator, 1,1 po)

erfailure,imm, noproperty 42 000000 4.2 .00

0000)

testfiol

matl_s { . setstate,—1 rsimn, 1,bus, 1,1 power fail

bre, irnrn, hoproperty, 4.3 000000 4.3 000

00)

testformatl_s | . setstate)

1, rsim, 1,0ms, 1,1 poswer failure, imm,noproper

44.000000,44.000000 .3)

craciformat_s { . acterncd,

CE,dms, 1 actuatar,1,1,2,imm, 0,1 633

(00000,16334.000000 3 3

(C) Copyright Rainer Gert

lich, BSSE 1997

BSSE System and Software Engineering

DMS processor

sensor
actuator

bus

Recording of Target System

Execution

ikl

- M-

View 1

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

Data Flow

11

41

51

61

75

RSIM

DMS processor Sensor Data Request

Sensor

Actuator

Bus

Bus

4120

Sensor Data Preparation

5121 - 512

Telemetry Data Processini

Sensor Data Reception Act. Cmd. Sending

4123

Bus Bus——Bus

4125

Act. Cmd, Processing
6126-6147

Bus—Bus Bus

Bus

1128

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

Conclusions

partitioning of system development and validation needed

® best method and tool for a certain application type: separated verification
® integration of system partitions in SDL

® complete or advanced system validation in SDL

® through all platforms

partitioning ensures success of validation of a broader class of
applications

efficient walk through the platforms
® after optimisation of organisation

for detailed questions:
® time for detailed walk-through

(C) Copyright Rainer Gerlich, BSSE 1997

BSSE System and Software Engineering

(C) Copyright Rainer Gerlich, BSSE 1997

