GIFTBox: A Guide to Master Distributed, Heterogeneous Systems

Rainer Gerlich
Bedan Software and System Engineering
Auf dem Ruhbuehl 181
D-88090 Immenstaad
Phone: +49/7545/911.258, +49/7545/529
Mobile: +49/171/80.20.659
Fax +49/7545/911.240
e-mail: gerlich@t-online.de

-Bedan-System and Software Engineering




-Bedan-System and Software Engineering

GIFTBox: A Guide To Master Distributed, Heter ogeneous Systems

Rainer Gerlich
BedanSystem and Software Engineering

BSSE
Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany
Phone: +49/7545/911.258, Mobile: +49/171/80.20.659, Fax +49/7545/911.240
e-mail: gerlich@t-online.de

Abstract: GIFTBox (Generic Interfaces and Fault-Tolerant Boxes) is a scheme for description o
heterogeneous and/or distributed systems in terms of generic interfaces and fault-tolerant modues
(boxes). This <£heme dlows to construct a larger system by simple and clea rules out of generic
elements ("atoms' and "binding" rules) and provides the caabilities neaded to master the
problems of maintenance and evolution together with distributed and heterogeneous g/stems. It is
based ona dea and simple dasdficaion d communication and system adivities. The structuring
and communicdion mecanisms imply fault encgpsulation and known error propagation,
respedively. The propcsed decomposition scheme is an enhancement of the dass concept well -
known from objed-oriented programming (OOP), e.g. using HOOD, Ada or C++. Whilst OOP is
just recommending classusage, GIFTBox advises a system enginea which classs he shoud build
or reuse, which functionality shall be included in abox (clas9, and hav composite boxes (higher
classes) shall be mnstructed from basic dasss. Vice versa, this construction pinciple dlows to
crossched a system decompasition for forgotten functionality. The generic, bu well defined
interfaces and the dea control flow alow to integrate existing comporents using the same or
another hardware or software platform. Moreover, the GIFTBox scheme dlows to arganise and
manage aprojed in acwordance with the technicd approadch. GIFTBoXx is complementary to the
EaSyVaDe approach which aims to reduce development risks by early system validation.

Keywords: System architedure, distributed systems, heterogeneous platforms, system integration,
fault-tolerance, maintenance, system evolution, project management

1 INTRODUCTION

Development of larger systems is a dalenge becaise one has to master the wntracdual,
management and technicd aspeds. This becomes even a higher challenge for distributed,
heterogeneous systems which need to be fault-tolerant and open for future evolution.

Contradual aspeds ded with the distribution o work over severa contradors and the synthesis of
alot of deliverables to the desired system right in time and within the given budyet. Management
aspeds addressthe strategy of system development, which development approach shall be gplied,
which commercial products dhall be used, hav sufficient efficiency can be adieved, hav the
technicd problems dhall be tadled, how the system is made sufficiently maintainable and open for
evolution, hav the required quelity can be adieved. The tedhnicd aspeds concentrate on a
system's operations, ontheir implementation by hardware and software within given environmental
constraints.

At the first glance dl the threetypes of aspeds seam to be independent and it is neither obvious
that they can be w-ordinated na that there is a need to harmonise them. Work padkages, a
contradua matter, are defined in terms of development resources, like man power, fadliti es and
time. Why shall they be rrelated with development strategy or implementation o system
functions? Such aspects can be considered in each work package internally.



-Bedan-System and Software Engineering

However, such a correlation becomes evident when something goes wrong. If we have to make a
technical change what is the contractual implication? Is only one contractor effected or a number
of contractors? Then we may recognise that by harmonisation of contractual and technical aspects
we would have produced less effort.

Similarly it is for contractua and management aspects. E.g. reuse is not only a matter inside a
contract. Several contracts may include similar functionality. Why not to reuse components across
such contracts? However, this has to be organised.

Also, between management and technical aspects a dependency exists. E.g. maintainability and
testability are management issues, but they are depending on the technical implementation.

So each type of aspectsisin a potentia conflict with the other ones. In such a case one GIFTBox
rule (which is explained later) applies already: whenever there are competing elements (slaves)
they need a co-ordinator (master). In this case GIFTBox is the co-ordinator itself. It allows to
harmonise the potentially conflicting goals of each aspect.

GIFTBox puts main emphasis on the technical aspects under consideration of the management and
contractual aspects. It concentrates on system operations because this is what is expected later as
service from a system. When the system is in operation we do not see any more contractual
boundaries or management issues. They have to disappear completely. If not, system operations
would be compromised.

GIFTBox solves the potential conflict between contractual and technical aspects by encapsulation
of an operational sub hierarchy of the system into a contractl. The management aspects are
considered by introduction of clear generic rules which ensure good maintainability, testability and
openness for future evolution. Higher degree of reuse is introduced by standardisation of interfaces
and guidelines for identification of reusable components. To summarise, the potential conflicts are
solved by organising the technical approach such that the contractual and management matters are
well covered.

GIFTBox assumes the worst case of system devel opment: heterogeneous, distributed systems, need
for integration of existing (sub-)systems, maintainable for a number of years, open for future
evolution. In the following chapters GIFTBox is briefly described, and its relevance for fault-
tolerant, heterogeneous and distributed systemsiis discussed.

2. GIFTBOX GUIDELINES

GIFTBox has already been considered from different points of view by two other papers [1,2]. In
[1] it is used for system refinement when applying the EaSyVaDe methodology (EaSyVaDe =
Early System Validation of Design). This methodology asks for incremental system validation in
order to reduce the risks at the earlier life cycle phases. In [2] the benefit of formalisation is
discussed and GIFTBox is used to ease integration and to increase reuse. The current paper
addresses relevance of GIFTBox to distribution, heterogeneous platforms and fault-tolerance.

The GIFTBox guidelines and associated figures shall briefly be repeated and explained here:

1. genericinterfaces
they define the types of communication between generic fault-tolerant boxes and the
semantics of the types (Fig. 2-1)

2. master-slave concept
a co-ordinator ("master") is needed for a set of boxes (components, modules, "saves')
appearing on the same level to avoid conflicts in responsibility between the slaves (Fig.
2-2)

1 Several sub hierarchies could be put under the same contract, if needed. But either such sub hierarchies have
the same root on the next higher level, then we get again only one sub hierarchy, or they are independent and
do not interfere, so one contract covers several subcontracts.



3. top-down decomposition?

a. decomposition into a generic and an application specific box (Fig. 2-3)

-Bedan-System and Software Engineering

b. identification of dynamic components (modes) (Fig. 2-4)

c. identification of static components (operations, functions, services, subsystems)
(Fig. 2-5)

d. iteration between static and dynamic levels (Fig. 2-6)

e. decomposition of the generic manager into principal management components

(Fig.2-7)
Commands
| Messages Component
. Requests
Generic
Repoyts Application Reports Component
Specific

l M essages Component
| Rec?uests

Fig. 2-1: Generic Interfaces

Fig. 2-3: Generic and Specific Part

Reports

M essages
Commands & &
Y  Requests
d
* q
P Maser » -
< Reports Reports
Commands
Reports
——— v v
v v
} Slavel > é } Slave2 >
& M essages
< e T T T
Reports Reports &
v Requests
M essages
Commands & &
v Requests

n
L4

Fig. 2-2: Control Hierarchy and Master-Save Concept

2 |n reverse order ("bottom-up" synthesis) the related rules can also be applied, of course.




-Bedan-System and Software Engineering

System Component 4 System Mode )
M essages
Commands & & Messages
¥ Requests Commands&v R et
equests
<
ode] W ‘
[ Mgt. Reports Reports ’aut
1 - Reports Reports
Renorts Commands R t T
p | 1 eporwm's Reports Commands Reports
L »Mod L—»Mod M ’
. : ‘ s Subl Sub2 Messages
Reports * + Requests 4 Reports *—LRe%uws
M essages
Commands & R &uests Commands & M essages
v
eq \\ v Re%uesls /

one mode within a certain period several subcomponents exist over|time

mutually exclusive complementary functionality

Fig. 2-4: System Component and Its Dynamic| |Fig. 2-5: System Mode and Its Static Internals
Internals

Generic Master

/System Modes \ Communication
Management

System Component with Operations

/Subwstem Operational Modes \
anagement

Subsystem Components with Operations

Assembly Operational Modes %Aogg%ggg%n

Assembly Components with Operations

G ]

_—[Monitoring

Health & Fault

Checkout

- 7
Fig. 2-6: Iterations between Components: Fig. 2-7: Principal Management Components

Operations and Modes

The interfacetypes (Fig. 2-1) are divided into control flow (from top to batom) and data flow
(from left to right). Data ae not further subdvided, they are just treaed as reports which are
results of processng and are used as input to anather comporent. Control flow is subdvided into
commands, messages and requests. The structure of a cmporent's interfaceis fixed by the shown
interface lines.

By using the fixed interface structure and the well-defined semantics we ae @le to buld a
comporent'sinternalsin a dean manner, uncderstanding what is coming in and what is leaving, and
what is the impact on a component.

By commands a master advises a slave to follow diredly the given instructions. There is no way to
rejed except in contingency case. A command may change the mode3 of the slave. By a request a

3 A modeisrelated to a cetain operational goal a mwmponent aims to achieve during a cetain period o time.
This goal may be dhanged acmrding to the misson phases. The services needed to achieve such a goal may
be diff erent during diff erent modes. A mode switch may be neaded e.g. in case of afault if only another mode
allows to keep the system alive.



-Bedan-System and Software Engineering

dave asks (pdlitely) his master for some services, e.g. for information (reports). The master may
nat diredly respondto the request. A request (normally) does not change the mode of the master.
By amessage aslave informs his master abou his date, e.g. by telli ng ‘command exeaution started'
which is a positive message. However, negative messages are dso pasdble like 'performance lost’,
‘command execution failed'.

Basicdly, a dave must not change the state of his master. But in case of such negative messages
fault propagation occurs:. a (fault-tolerant) box fail ed to provide the expeded service In thiscase a
master may have to change his mode, becaise he caina continue his srvice He may try to
adivate aredundant comporent of a slave in arder to recover from this fault, but he may nat be
able to recver. If no complete recovery from the fault is posgble the fault propagates again to the
next higher level, possibly with less degree of severity.

The master-slave concept (Fig. 2-2) is introduwed in oder to get a dean approach for
responsihiliti es and commanding. Also, the master represents the interfaceto the outside world. If
the mntents of an interfaceis changed (the structure is fixed acording to rule 1) then the slaves
are not (necessrily) effeded. Viceversaif internal interfaces are dhanged the outside world is not
effected because the master absorbs such changes.

Each slave only communicates with his master concerning commands, messages and requests.
However, another slave may listen to the reports ent by any slave. This allows to implement
slaves which ad as communication medium (channels). A master may provide to his daves a
communication mechanism to the outside world in a transparent manner (see &so Figs. 4-1 and 4-3
below).

It was foundthat certain management tasks are nealed at severa places in the whae hierarchy
(Fig. 2-3). In order to increase reuse amaster is subdvided into a generic and an application
specific part.

When we look at a system comporent we first seeits different modes (Fig. 2-4), e.g. power or de
powered, standby or fully operational. For ead mode a cetain set of operationsis provided by sub
comporents (Fig. 2-5). In order to manage amode transition in a dean manner we nead a mode
manager which ads acording to the master-slave rule (GIFTBox rule 2). He dedcks if the
conditions are fulfilled to enter or to leave a certain mode.

The system comporents related to ead mode ae dso managed by the master-slave mncept as
shown by Fig. 2-5. In this manner a system is built like an orion consisting of mode shells and
operational shells (Fig. 2-6): a mode shell follows an operational shell and vice #ersa

The principal comporents of a Generic Component are shown in Fig. 2-7. What is commonto eath
principa comporent is communicaion management, command pocessng, configuration
management (e.g. to recover from a fault by reconfiguration), hedth and fault management and
report management. Monitoring of limits or of other propertiesis a generic functionality which can
be spedalised by data. FDIR (Fault Detedion, Identificaion and Revery) may also be expressd
by generic functions. By ched<out non-operational comporents are tested whether they are faulty
or not before they shall become operational. Report management addresses the @lledion o data
and their formatting. Communication management may provide diredly the means for command
and report transfer to ead slave. Then a slave can diredly transmit data to the outside world till
not knowing what the communicaion medianism redly is. The same communication resources
may be shared by several masters in the hierarchy.

Our experienceisthat GIFTBox rules 1 -3 apply in every case. E.g. if we did na foresee amaster
becaise we were convinced there is nothing to dofor a master, later on it turned ou that there is

4 Within eat such shell of an "onion" (box) a number of onions (boxes) can occur again as sown by
Fig. 2-2.



-Bedan-System and Software Engineering

something to do. In consequence, we decided to do it just vice versa: we assume that a master is
needed and we ook for the tasks he has to do, and we succeeded with this approach.

3. RELATIONSHIP TO EASYVADE

GIFTBox yi€elds a hierarchical decomposition. By EaSyVaDe> a system is also hierarchically
decomposed. During system refinement the impact on the hierarchy by extensions or changesin a
certain branch must be minimised, e.g. in case of a transition between specification and design or

in case of iterations.

GIFTBox is the scheme
Commands& Meffagg which alows to master
Requess this challenge of keeping

the hierarchy as stable as
possible. Basicaly, we
had the GIFTBox scheme

SpeC|flcat|On M Odel in mind when we defined

the EaSyVaDe life cycle
Reports Reports approach.

i EaSyVaDe uses
(no Inter naJs) executable models during

specification and design
from which target code is
derived. Each such model
is represented by a

M essages
Comma”dS&l . GIFTBox box.
Requests
When making the
Fig. 3-1: Specification Box: A High Level View transition from

specification to design
the interface of the specification model (specification box) is kept for the design model (design
box). This transition means to give the specification model of Fig. 3-1 an internal structure as
shown by Fig. 2-2: the simple specification box is expanded into the more detailed design box
according to the refinement of functionality, behaviour and the introduced architecture. The master
inside a design box limits the impact by external changes onto the internal components. Similarly,
internal changes are limited to the outside world.

4, TOWARDSFAULT-TOLERANCE

The degree of automation will grow in future and therefore fault tolerance is becoming more and
more important. Final decisions made currently by a human operator may be performed
automatically by a systemin future.

In case of distributed and heterogeneous systems we have to care about data consistency and
availability of data right in time, and to prevent commanding and access conflicts due to
insufficient communication and co-ordination means.

5 EaSyVaDe is an outcome of the ESTEC project OMBSIM (On-Board Management System Behavioural
Simulation) [3]. It is now used for the ESTEC study DDV (Data Management System Design Validation) [4].
An incremental life cycle approach based on EaSyVaDe is described in [5]. Results of application are given
in [6a, 6b].



-Bedan-System and Software Engineering

For implementation of fault-tolerance one needs (a) to define exactly the component which shall
be fault-tolerant and (b) to care about what shall happen if an error® propagates (for whatever
reasons) outside such a fault-tolerant component.

Again, GIFTBox harmonises the issue of fault-tolerance with the issue of getting clear operational
interfaces. a fault-tolerant component (FTC) is identical with a sub hierarchy, and a generic
GIFTBox interface defines exactly not only the data and command flow, but also the flow of
exceptions (the messages of Fig. 2-1). This allows to encapsulate not only the functionality and
behaviour but also error recovery. An error may propagate bottom-up until it is handled’. If it
cannot be handled then the component needing the lost service has to switch to a degraded mode.
The mode manager of Fig. 2-4 alows to perform such amode transition in a controlled manner.

One achieves fault-tolerance (a) by asking for each service visible at an interface what happens if it
is lost, and (b) by providing a recovery procedure in the component using this service.
Consequently, one has to care about 1oss of services or not getting it right in time. Whenever thisis
forgotten or not completely done one will loose system performance if an error occurs in the
related part.

The benefit of such recovery procedures has to be compared with costs of their implementation, of
course. So the finally implemented degree of fault tolerance is a compromise between minimum
system performance which can be tolerated and available budget. Such considerations may lead to
a decision that not each single service has to be fault-tolerant but the whole module providing the
service.

Also, there might be cases for which it is only possible to handle a failure sufficiently at a higher
level. Then it does not make sense to provide fault-tolerance at the level of fault occurrence. In
such cases after any failure a redundant module has to be available rather than a redundant service.
Hence afault may propagate bottom-up until it will be handled at a higher level.

So fault propagation may be a reasonable part of a fault-tolerant concept and not in conflict with
the idea of fault-tolerance provided that fault recovery is ensured before the system looses its
minimum set of required services.

GIFTBox guides an engineer how to implement fault tolerance by making the interfaces visible:
for each service provided by alower level component he may implement a recovery action, at least
he has to make up his mind whether to provide it or not. To recover from an error one must
initiate a controlled switch to the backup (see Fig. 2-4). GIFTBox advises an engineer to foresee
such detection and recovery mechanisms in each (major) component by the rules and guidelines
given above in chapter 2.

5. DISTRIBUTED AND HETEROGENEOUS SYSTEM S

Even if we do not think at the beginning to build a distributed, heterogeneous system, we cannot be
sure to end up with such a system, when the system will be maintained and will evolve. Also, when
we go to build a system we may not know if during development it has to become a distributed
system for performance reasons or if we need heterogeneous platforms to cover the desired
functionality in an optimum manner.

Consequently, we have to take a devel opment approach which allows to introduce distribution and
heterogeneous platforms without major overhead if we need to do it. Vice versa, we should not be
charged for something which we do not need. A potential capability should not cause any overhead
if we do not need it.

6 The definition for faults, errors and failures is: (a) faults are the source of anomalies, (b) an error is the
manifestation of afault, (c) afailureisthe weighted impact of an error on a system.

7 HOOD and Ada use also such error propagation mechanisms. However, they do not provide rules how to
foresee (or not to forget) handling of errorsin a systematic manner.



-Bedan-System and Software Engineering

To be flexible enough we neel a transparent mechanism for suppat of distribution and
heterogeneous platforms. The driving ideais that system services are amatter of user needs, hence
they areinvariant (at least after the user requirements have been frozen). Distribution a the type of
platforms doud na effed the functional decompasition, they are just a means to ogimise system
performance, to cover environmental constraints or future evolution.

To adiieve the de couding of system capabilities from their implementation we neal clean
interfaces o that other parts of a system are not effeded when we introduce distribution, ancther
platform or when we dedde to migrate asystem service to ancother system noce in the network.
The interfaces and the master-slave aoncept described above dlow to adhieve this degree of de
coupling

As dready mentioned above a master keegps the interfaces between its environment and its
internals. When an internal is migrated they are replaced by another comporent (dummy box)
which manages the remote accss to the migrated comporent (Slaves 1 and 2 in Fig. 51).
Replacament of an internal is equivalent to a change and therefore again the master ensures the
stability of his environment.

Remot
Master Mas@%
Repor s Reports
» b

Dumm igrat Migrat
Slavel, Slavel Sla@

Commands, Mmg%z% Requests

Reports “Messages & Requests

Node X NodeY

Reports

Fig. 5-1: Transparent Migration of System Components

The migrated internal componrents again get a master at the remote site and are included in a box
as before. This master communicates with the dummy box o Node X (viathe associated master of
the dummy box) so that the communicaion between a system's comporents is performed as
before. The aditional communicaion link is not visible to comporents of Node X. It is even nd
visible for the migrated comporents themselves. This transparent mechanism for migration and
distribution hes aready been demonstrated [7,8] and wsed [9]. The new "Virtual Node" concept of
HOODA4 [10, 11] is based on this approach.




-Bedan-System and Software Engineering

Nodel Node 2 Node 3

[ [ | [ [ | [ [ |
‘ BOXZ‘ lBOX3‘ lBOXt4‘ l BOXZ‘ ‘BOX3‘ ‘BOX4‘ ‘BOXZ‘ ‘ BOXS‘ ‘BOX4‘

Fig. 5-2: Allocation of System Components to Nodes

It is also possible to migrate only a subset of the slaves or to run sub-components on other nodes
than the root components. Fig. 5-2 shows distribution of a system hierarchy over three nodes. In
principle, arbitrary allocation of components to nodes is possible. The mapping is just a matter of
system performance and environmental constraints.

Introduction of heterogeneous platforms is mastered in the same manner. The transition between
platforms is managed by the master interface (Fig. 5-3). The communication link is considered as
part of the generic master (Fig. 2-7). Therefore neither external components nor internal ones are
effected.

This principle also alows heterogeneous (hard real-time) scheduling of tasks on different
platforms (if appropriate from a technical point of view). A scheduler is part of the commanding
capability of the generic master. Each master gets a certain time window from the higher level
master during which his tasks can be scheduled [10,12].

Platform 1 Platform 2
N + — +
Communication . R Communication
Management vy M anagement

Platform Link

L+|+ L+|

4
A L |

Fig. 5-3: Management of Heterogeneous Platforms

6. CONCLUSIONS

It has been shown that a number of aspects for system development, maintenance and evolution
can be mastered by a small set of rules. Emphasis is put on generic interfaces and clear control
flow. To avoid commanding conflicts a master-slave relationship is introduced. The master covers
principal and generic activities of system components and allows to handle distribution and
heterogeneous platforms in a transparent manner. Through the generic interfaces fault-tolerant
properties are defined. Handling of errors is supported by a clear commanding concept for mode
changes.

The GIFTBox scheme may be applied to a broad range of applications, especialy to large and/or
safety-critical ones.

-10-



-Bedan-System and Software Engineering

6. REFERENCES

[1] R.Gerlich, Ch.Schaffer, Y.Tanurhan, V.Debus: EaSyVaDe / EaSySim: "Early System
Validation d Design by Behavioural Simulation”, ESTEC 3rd Workshop on"Simulators
for European Space Programmes", November 15-17, 1994, Noordwijk, The Netherlands

[2] R.Gerlich: "CIVE (Computer Integrated Validation Environment): A Future Challenge”,
DASIA96 (Data Management Systemsin Aerospace, Eurospace onference, May 20-25,
1996, Rome, Italy

[3] OMBSIM (On-Board Management System Behavioural Simulation, ESTEC contrad no.
10430/93/NL/FM(SC), Final Report February 1996, Noordwijk, The Netherlands

[4] DDV (DMS Design Validation), ESTEC contrad no. 955891/NL/JG(SC), Formal
Methods and Tools, Selection & Justification Report, TR/171/PhH/95, 30.06.95

[5] R.Gerlich, C.Joergensen: "An Alternative Life oycle Based on Problem-Oriented
Methods and Strategies’, International Symposium on On-Board Red-Time Software,
ESTEC, Noordwijk, The Netherlands, November 13-15, 1995

[6a] R.Gerlich, Th. Stingl, Ch. Schaffer, F. Teston, G. Martinelli, Y. Tanurhan: "Use of an
Extended SDL Environment for Spedficaion and Design of On-Board Operations’,
Systems Engineaing Workshop, November 28-30, 1995, ESTEC, Noordwijk, The
Netherlands

[6b] R.Gerlich: "From CASE to CIVE: A Future Challenge!”, DASIA'96, Data Systems in
Aerospace, May 20-23, 1996, Rome, Italy

[7] R.Gerlich: "On-Line Replacanent and Rewnfiguration d Ada Red-Time Software",
Eurospace Symposium "Ada in Aerospace", December 1990, Barcelona, Spain

[8] R.Gerlich: "Run-Time Linking and On-Line Mode Management with Ada', ESA 1st
Conference on Spacecaft Guidance, Navigation and Control, May 1991,Noordwijk, The
Netherlands

[9] J-M. Letteron: "SOFTPAR: A Software Fadory for Paralel Applicaions’, ESFRIT
Project 8451, Project Report (S29.2), January 11, 1996

[10] HOOD4 Reference Manual, 1996, HOOD User Group, Brussels, Belgium

[11] R.Gerlich, M.Kerep: Parallel and Distributed Systems and HOOD4, Adain Europe 1995,
October 2-6, 1995, Frankfurt, Germany

[12] R.Gerlich: "Propcsal for Hard Red-Time Extensions for HOOD4", ESFRIT Projed
8451, SOFTPAR, D3.3, July 7, 1995

-11-



