

BSSE System and Software Engineering

 DARTT

DARTT automates testing of C functions from test case generation to test evaluation and
documentation. The product offers high productivity of testing, coverage analysis,
identification of exceptions and execution times. Starting of a script in the source directory is
fully sufficient to run the automated tests and to get the results in an automatically generated
document.

Technical Brief

Automated Test Procedure

� Automated Function Testing

� Random, Statistical and
Incremental Test Steps

� Automated Test Vector

Generation (Input and Output)

� Automated Robustness
Testing and Fault Injection

� Automated Coverage

Analysis

� Automated Control Flow
Analysis *

� Automated Exception

Recording

� Determination and Recording
of Execution Times

� Instrumentation support for

Integration and System
Testing

� Automated Documentation

� Code Analysis: Function and

Type Properties

� Automated Instrumentation:
Assertions, Data Monitoring *

� Auto-Porting

� Auto-Lock Removal

� Full support for Ada

GNAT, Aonix, TLD1750

Major Features

• User Interaction:

provide the source files, wait for
completion, analyse the documented
results

• Test Case Generation for all C and
user-defined types incl. fault injection

• Test Vector Recording in ASCII and
spreadsheet input format (e.g. MS-
Excel)

• Execution Time Recording per
function

• Exception Recording: file, function
and line of raising statement, sorting
according to user-defined categories

• Data Monitoring by automated
instrumentation for function
parameters, static and stack data,
identification of limits.*

• Assertions on function parameters,
static and stack data by automated
instrumentation. *

• Coverage Analysis:
block coverage (C0),
MC/DC coverage (C3)*

• Source Code Analysis:
Subprograms, types, source lines,
comment and blank lines

* in preparation

Block Execution vs. Functions

Block Nesting Level of Functions

Graphical presentation of results as
available for DCRTT in preparation.

• Adaptation of pragmas:

All pragmas which are not compliant
with the target compiler are adapted.

• Harmonisation of package and file
names

• Adaption of attributes like soie and
objectsize.

• Stubs for functions not availabe on or
non-portable to the target compiler,
like assembler or library functions.

• Immediately executable code for
target compiler

Auto-Porting

Auto-Lock Removal
• Deactivation of code which will block

subprogram testing

• Deadocks: deactivation of code
causing deadlocks like accept/select
serviced by interrupts not avaiallbe
after porting.

• Livelocks: deactivation of code
causing deadlocks like forever-loops.

Reports
Graphics

RTF document

Original

Source Code

Function Prototypes
+ Type Information

Results

Object Files

DARTT

Test Generator

Subprogram
Test

Environment

Executable

Test Program

Spreadsheet

Stimulation
Test Monitoring,

Instrumentation

DARTT

Test Evaluation

Exception Tracing
Coverage
Control Flow
Assertions
Data Monitoring

Lock Removal

Deadlocks
Livelocks

DARTT

BSSE System and Software Engineering

Technical Brief

����DARTT

Supported Native Compilers
DARTT is available for GNAT, Ada
compiler, other compilers on
request

Supported Target Compilers
DARTT is available for GNAT,
Aonix and TLD 1750 compilers,
other compilers on request

Native Development Platforms

Windows 2000, XP
Linux in preparation

Further Information

BSSE’s testing tools support the unit /
module, integration and system level
testing of ANSI C (DCRTT) and Ada
(DARTT) high integrity and business
critical development projects. Further
information and detailed product
presentations are available from the
IPL and BSSE websites or contact
your local supplier.

Static analysis provides information on
code qunatities, functions and types.

• Procedural Metrics including code
lines, comments, functions, and
counts of most code constructs.

• Function and Type Information:
prototypes, caller-callee
dependencies, type dependencies

* in preparation

Code Analysis Coverage Analysis

Coverage analysis provides objective
measurement of how effective testing
has been in executing the source code.

• Code Coverage Metrics

Entry points, Call Returns
Statements, Basic Blocks
Decisions (branches)
Conditions*

MC/DC (DO-178B) *
Exceptions

Integration and System Tests
The capabilities for coverage analysis and exception identification are also available
for integration and system level testing.

Supplier

 DARTT

����������������

Function Hierarchy

Type Hierarchy

Integrations
The capabilities for coverage analysis and exception identification are also available for
integration and system level testing.

Native
Compiler

Aonix, TLD

AutoPort
Target of
Porting

GNAT
Original
Source
Code

Adapted
Source
Code

Iterations

Compiler
Messages

AutoPort

AutoPort: Fault Identification by Platform Diversification
Platform Diversification is a powerful capability for identification of faults very difficult to
detect by usual tests and anylsis methods like “dormant faults”. It benefits from different
and complementary capabilities of platform components such as processor type, OS and
compiler. AutoPort supports platform porting at zero human effort and identifies
differences in compiler messages. DARTT supports automated execution of the ported
source code and identification of “hiding” faults at run-time.

Dr. Rainer Gerlich BSSE System and
Software Engineering

Voice : +49 (0)7545 911258
Fax : +49 (0)7545 911240
Email : dartt@bsse.biz

Copyright © BSSE 2009.

